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Chapter 1  

 

Introduction

 

1.1  Purpose of the document

 

This document is intended for developers of the Athena control framework. Athena is based upon the 

GAUDI architecture that was originally developed by LHCb, but which is now a joint development 

project. This document, together with other information about Athena, is available online at:

 

http://web1.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture

 

This version of the Athena Developers Guide corresponds to Athena release 7.5.0. This is based upon 

ATLAS GAUDI version 0.12.1.5, which itself is based upon GAUDI version 12. 

 

1.2  Athena and GAUDI

 

As mentioned above Athena is a control framework that represents a concrete implementation of an 

underlying architecture. The architecture describes the abstractions or components and how they 

interact with each other. The architecture underlying Athena is the GAUDI architecture originally 

developed by LHCb. This architecture has been extended through collaboration with ATLAS, and an 

experiment neutral or kernel implementation, also called GAUDI, has been created. Athena is then the 

sum of this kernel framework, together with ATLAS-specific enhancements. The latter include the 

event data model and event generator framework. 

The collaboration between LHCb and ATLAS is in the process of being extended to allow other 

experiments to also contribute new architectural concepts and concrete implementations to the kernel 

GAUDI framework. It is expected that implementation developed originally for a particular experiment 

will be adopted as being generic and will be migrated into the kernel. This has already happened with, 
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for example, the concepts of auditors, the sequencer and the ROOT histogram and ntuple persistency 

service.

For the remainder of this document the name 

 

Athena

 

 is used to refer to the framework and the name 

 

GAUDI

 

 is used to refer to the architecture upon which this framework is based.

 

1.2.1 Document organization

 

The document is organized as follows:

 

1.3  Conventions

 

1.3.1 Units

 

This section is blank for now.

 

1.3.2 Coding Conventions

 

This section is blank for now.

 

1.3.3 Naming Conventions

 

This section is blank for now.

 

1.3.4 Conventions of this document

 

Angle brackets

 

 are used in two contexts. To avoid confusion we outline the difference with an 

example.

The definition of a templated class uses angle brackets. These are required by the C++ syntax, so in the 

instantiation of a templated class the angle brackets are retained:

 

AlgFactory<UserDefinedAlgorithm> s_factory;
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This is to be contrasted with the use of angle brackets to denote ÒreplacementÓ such as in the 

specification of the string:

which implies that the string should look like:

Hopefully what is intended will be clear from the context.

 

1.4  Release Notes

 

Although this document is kept as up to date as possible, Athena users should refer to the release notes 

that accompany each ATLAS software release for any information that is specific to that release. The 

release notes are kept in the 

 

offline/Control/ReleaseNotes.txt

 

 file.

 

1.5  Reporting Problems

 

ATLAS uses the Savannah portal for reporting and tracking of problems. The URL for the Athena 

project is 

 

http://savannah.cern.ch/projects/athena

 

.  

 

1.6  User Feedback

 

Feedback on this Developers Guide, or any other aspects of the documentation for Athena, should be 

sent to the ATLAS Architecture mailing list at 

 

atlas-sw-architecture@atlas-lb.cern.ch.

 

Ò<concreteAlgorithmType>/<algorithmName>Ó

ÒEmptyAlgorithm/EmptyÓ
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Chapter 2  

 

The framework architecture

 

2.1  Overview

 

In this chapter we outline some of the main features of the Athena architecture. A (more) complete view 

of the architecture, along with a discussion of the main design choices and the reasons for these choices 

may be found in references [6] and [9].

 

2.2  Why architecture?

 

The basic ÒrequirementÓ of the physicists is a set of programs for doing event simulation, 

reconstruction, visualisation, etc. and a set of tools which facilitate the writing of analysis programs. 

Additionally a physicist wants something that is easy to use and (though he or she may claim otherwise) 

is extremely flexible. The purpose of the Athena application framework is to provide software which 

fulfils these requirements, but which additionally addresses a larger set of requirements, including the 

use of some of the software online.

If the software is to be easy to use it must require a limited amount of learning on the part of the user. In 

particular, once learned there should be no need to re-learn just because technology has moved on (you 

do not need to re-take your licence every time you buy a new car). Thus one of the principal design 

goals was to insulate users (physicist developers and physicist analysists) from irrelevant details such as 

what software libraries we use for data I/O, or for graphics. We have done this by developing an 

architecture. An architecture consists of the specification of a number of components and their 

interactions with each other. A component is a ÒblockÓ of software which has a well specified interface 

and functionality. An interface is a collection of methods along with a statement of what each method 

actually does, i.e. its functionality.
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The main components of the Athena software architecture can be seen in the object diagram shown in 

Figure 2.1. Object diagrams are very illustrative for explaining how a system is decomposed. They 

represent a hypothetical snapshot of the state of the system, showing the objects (in our case component 

instances) and their relationships in terms of ownership and usage. They do not illustrate the structure, 

i.e. class hierarchy, of the software.

It is intended that almost all software written by physicists, whether for event generation, reconstruction 

or analysis, will be in the form of specialisations of a few specific components. Here, specialisation 

means taking a standard component and adding to its functionality while keeping the interface the 

same. Within the application framework this is done by deriving new classes from one of the base 

classes:

¥ DataObject

¥ Algorithm

¥ Converter

In this chapter we will briefly consider the first two of these components and in particular the subject of 

the ÒseparationÓ of data and algorithms. They will be covered in more depth in chapters 3 and 7. The 

third base class, Converter, exists more for technical necessity than anything else and will be discussed 

in Chapter 12. Following this we give a brief outline of the main components that a physicist developer 

will come into contact with.

 

Figure 2.1 
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2.3  Data versus code

 

Broadly speaking, tasks such as physics analysis and event reconstruction consist of the manipulation 

of mathematical or physical quantities: points, vectors, matrices, hits, momenta, etc., by algorithms 

which are generally specified in terms of equations and natural language. The mapping of this type of 

task into a programming language such as FORTRAN is very natural, since there is a very clear 

distinction between ÒdataÓ and ÒcodeÓ. Data consists of variables such as:

 

      integer n

      real p(3)

 

and code which may consist of a simple statement or a set of statements collected together into a 

function or procedure:

 

      real function innerProduct(p1, p2)

      real p1(3),p2(3)

      innerProduct = p1(1)*p2(1) + p1(2)*p2(2) + p1(3)*p2(3)

      end

 

Thus the physical and mathematical quantities map to data and the algorithms map to a collection of 

functions.

A priori, we see no reason why moving to a language which supports the idea of objects, such as C++, 

should change the way we think of doing physics analysis. Thus the idea of having essentially 

mathematical objects such as vectors, points etc. and these being distinct from the more complex beasts 

which manipulate them, e.g. fitting algorithms etc. is still valid. This is the reason why the Athena 

application framework makes a clear distinction between ÒdataÓ objects and ÒalgorithmÓ objects.

Anything which has as its origin a concept such as hit, point, vector, trajectory, i.e. a clear 

Òquantity-likeÓ entity should be implemented by deriving a class from the 

 

DataObject

 

 base class. 

On the other hand anything which is essentially a ÒprocedureÓ, i.e. a set of rules for performing 

transformations on more data-like objects, or for creating new data-like objects should be designed as a 

class derived from the 

 

Algorithm

 

 base class.

Further more you should not have objects derived from 

 

DataObject

 

 performing long complex 

algorithmic procedures. The intention is that these objects are ÒsmallÓ.

Tracks which fit themselves are of course possible: you could have a constructor which took a list of 

hits as a parameter; but they are silly. Every track object would now have to contain all of the 

parameters used to perform the track fit, making it far from a simple object. Track-fitting is an 

algorithmic procedure; a track is probably best represented by a point and a vector, or perhaps a set of 

points and vectors. They are different.
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2.4  Main components

 

The principle functionality of an algorithm is to take input data, manipulate it and produce new output 

data. Figure 2.1 shows how a concrete algorithm object interacts with the rest of the application 

framework to achieve this.

The figure shows the four main services that algorithm objects use:

¥ The event data store

¥ The detector data store

¥ The histogram service

¥ The message service

The particle property service is an example of additional services that are available to an algorithm. The 

job options service (see Chapter 10) is used by the 

 

Algorithm

 

 base class, but is not usually explicitly 

seen by a concrete algorithm. 

Each of these services is provided by a component and the use of these components is via an interface. 

The interface used by algorithm objects is shown in the figure, e.g. for both the event data and detector 

data stores it is the 

 

IDataProviderSvc

 

 interface. In general a component implements more than 

one interface. For example the event data store implements another interface: 

 

IDataManagerSvc

 

 

which is used by the application manager to clear the store before a new event is read in.

An algorithmÕs access to data, whether the data is coming from or going to a persistent store or whether 

it is coming from or going to another algorithm is always via one of the data store components. The 

 

IDataProviderSvc

 

 interface allows algorithms to access data in the store and to add new data to 

the store. It is discussed further in Chapter 7 where we consider the data store components in more 

detail.

 

Figure 2.1 
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The histogram service is another type of data store intended for the storage of histograms and other 

ÒstatisticalÓ objects, i.e. data objects with a lifetime of longer than a single event. Access is via the 

 

IHistogramSvc  which is an extension to the IDataProviderSvc  interface, and is discussed in 

Chapter 8. The n-tuple service is similar, with access via the INtupleSvc extension to the 
IDataProviderSvc  interface, as discussed in Chapter 9.

In general, an algorithm will be configurable: It will require certain parameters, such as cut-offs, upper 

limits on the number of iterations, convergence criteria, etc., to be initialised before the algorithm may 

be executed. These parameters may be specified at run time via the job options mechanism. This is 

done by the job options service. Though it is not explicitly shown in the figure this component makes 

use of the IP roperty  interface which is implemented by the Algorithm base class.

During its execution an algorithm may wish to make reports on its progress or on errors that occur. All 

communication with the outside world should go through the message service component via the 

IMessageSvc  interface. Use of this interface is discussed in Chapter 10.

As mentioned above, by virtue of its derivation from the Algorithm base class, any concrete 

algorithm class implements the IAl gorithm  and IProperty  interfaces, except for the three 

methods initialize() , execute() , and finalize()  which must be explicitly implemented 

by the concrete algorithm. IAlgorithm is used by the application manager to control top-level 

algorithms. IProperty  is usually used only by the job options service. 

The figure also shows that a concrete algorithm may make use of additional objects internally to aid it 

in its function. These private objects do not need to inherit from any particular base class so long as they 

are only used internally. These objects are under the complete control of the algorithm object itself and 

so care is required to avoid memory leaks etc.

We have used the terms ÒinterfaceÓ and ÒimplementsÓ quite freely above. Let us be more explicit about 

what we mean. We use the term interface to describe a pure virtual C++ class, i.e. a class with no data 

members, and no implementation of the methods that it declares. For example:

is a pure abstract class or interface. We say that a class implements such an interface if it is derived from 

it, for example:

A component which implements more than one interface does so via multiple inheritance, however, 

since the interfaces are pure abstract classes the usual problems associated with multiple inheritance do 

not occur. These interfaces are identified by a unique number which is available via a global constant of 

class PureAbstractClass {

  virtual method1() = 0;

  virtual method2() = 0;

}

class ConcreteComponent: public PureAbstractClass {

  method1() { }

  method2() { }

}
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the form: IID_Int erfaceType , such as for example IID_IDataProviderSvc . Interface 

identifiers are discussed in detail in Chapter 14.

Within the framework every component, e.g. services and algorithms, has two qualities:

¥ A concrete component class, e.g. TrackFinderAlgorithm or MessageSvc.

¥ Its name, e.g. Ò KalmanFitAlgorithmÓ or Ò MessageServiceÓ.

2.5  Controlling and Scheduling

2.5.1 Application Bootstrapping

The application is bootstrapped by creating an instance of the ApplicationMgr component. The 

ApplicationMgr is in charge of creating an initializing a minimal set of basic and essential services 

before control is given to specialized scheduling services. These services are shown in Figure 2.1. The 

EventLoopMgr is in charge controlling the main physics event1 loop and scheduling the top algorithms. 

There will be a number of more or less specialized implementations of EventLoopMgr which will 

perform the different actions depending on the running environment, and experiment specific policies 

(clearing stores, saving histograms, etc.). There exists the possibility to give the full control of the 

application to a component implementing the IRunable interface. This is needed for interactive 

applications such as event display, interactive analysis, etc. The Runable component can interact 

directly with the EventLoopMgr for triggering the processing of the next physics event.

The essential services that the ApplicationMgr need to instantiate and initialize are the MessageSvc and 

JobOptionsSvc.

1.  We state physics event to differentiate from what is called generally an event in computing.

Figure 2.1 Control and Scheduling collaboration
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2.5.2 Algorithm Scheduling

The Gaudi architecture foresees explicit invocation of algorithms by the framework or by other 

algorithms. This latter possibility allows for a hierarchical organization of algorithms, for example, a 

high level algorithm invoking a number of sub-algorithms.

The EventLoopMgr component is in charge of initializing, finalizing and executing the set of 

Algorithms that have been declared with the TopAlg property. These Algorithms are executed 

unconditionally in the order they have been declared. This vary basic scheduling is insufficient for 

many use cases (event filtering, conditional execution, etc.). Therefore, a number of Algorithms have 

been introduced that perform more sophisticated scheduling and can be configured by some properties. 

Examples are: Sequencers, Prescalers, etc. and the list can be easily extended. See Section 3 for more 

details on these generic high level Algorithms.
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Chapter 3  

Writing algorithms

3.1  Overview

As mentioned previously the framework makes use of the inheritance mechanism for specialising the 

Algorithm component. In other words, a concrete algorithm class must inherit from (Òbe derived 

fromÓ in C++ parlance, ÒextendÓ in Java) the Algorithm base class.

In this chapter we first look at the base class itself. We then discuss what is involved in creating 

concrete algorithms: specifically how to declare properties, what to put into the methods of the 

IAlgorithm interface, the use of private objects and how to nest algorithms. Finally we look at how 

to set up sequences of algorithms and how to control processing through the use of branches and filters.

3.2  Algorithm base class

Since a concrete algorithm object is-an Algorithm object it may use all of the public and protected 

methods of the Algorithm base class. The base class has no protected or public data members, so in 

fact, these are the only methods that are available. Most of these methods are provided solely to make 

the implementation of derived algorithms easier. The base class has two main responsibilities: the 

initialization of certain internal pointers and the management of the properties of derived algorithm 

classes.

A part of the Algorithm base class definition is shown in Listing 3.1. Include directives, forward 

declarations and private member variables have all been suppressed. It declares a constructor and 

destructor; some methods of the IAlgorithm interface; several accessors to services that a concrete 
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algorithm will almost certainly require; a method to create a sub algorithm, the two methods of the  

IProperty interface; and a whole series of methods for declaring properties.

Listing 3.1  The definition of the Algorithm base class.

1: class Algorithm : virtual public IAlgorithm,

                virtual public IProperty {

2: public:

3: // Constructor and destructor

4: Algorithm( const std::string& name, ISvcLocator *svcloc );

5: virtual ~Algorithm();

6:

7: // IAlgorithm interface only partially implemented

8: StatusCode sysInitialize();

9: StatusCode sysExecute();

10: StatusCode sysFinalize();

11: StatusCode beginRun();

12: StatusCode endRun();

13: const std::string&  name() const;

14:

15: virtual bool isExecuted() const;

16: virtual StatusCode setExecuted( bool state );

17: virtual StatusCode resetExecuted();

18: virtual bool isEnabled() const;

19: virtual bool filterPassed() const;

20: virtual StatusCode setFilterPassed( bool state );

21:

22: // Service accessors

23: template<class T> StatusCode service( const std::string& name, T*& svc, 

bool createIf = false );

24: void setOutputLevel( int level );

25: IMessageSvc*        msgSvc()         const;

26: IAuditorSvc*        auditorSvc()     const;

27: IDataProviderSvc*   eventSvc()       const;

28: IConversionSvc*     eventCnvSvc()    const;

29: IDataProviderSvc*   detSvc()         const;

30: IConversionSvc*     detCnvSvc()      const;

31: IHistogramSvc*      histoSvc()       const;

32: INtupleSvc*         ntupleSvc()      const;

33: IChronoStatSvc*     chronoSvc()      const;

34: IRndmGenSvc*        randSvc()        const;

35: IToolSvc*           toolSvc()        const;

36: ISvcLocator*        serviceLocator() const;

37:

38: StatusCode createSubAlgorithm( const std::string& type, 

                 const std::string& name, Algorithm*& pSubAlg );

39: std::vector<Algorithm*>* subAlgorithms() const;

40:
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Constructor and Destructor  The base class has a single constructor which takes two arguments: The 

first is the name that will identify the algorithm object being instantiated and the second is a pointer to 

one of the interfaces implemented by the application manager: ISvcLocator. This interface may be 

used to request special services that an algorithm may wish to use, but which are not available via the 

standard accessor methods (below).

The IAlgorithm interface  The base class only partially implements this interface: the three pure 

virtual methods initialize(), execute() and finalize() must be implemented by a 

derived algorithm: these are where the algorithm does its useful work and are discussed in more detail 

in section 3.3. The base class provides default implementations of the methods beginRun() and 

endRun(), and the accessor name() which returns the algorithmÕs identifying name. The methods 

sysInitialize(), sysFinalize(), sysExecute() are used internally by the framework; 

they are not virtual and may not be overridden.

Service accessor methods  Lines 25 to 35 declare accessor methods which return pointers to key 

service interfaces. These methods are available for use only after the Algorithm base class has been 

initialized, i.e. they may not be used from within a concrete algorithm constructor, but may be used 

from within the initialize() method (see Section 3.3.3). The services and interface types to 

41: // IProperty interface

42: virtual StatusCode setProperty( const Property& p);

43: virtual StatusCode setProperty( std::istream s& );

44:

45: virtual StatusCode setProperty( const std::string& n,

                             const std::string& v);

46: virtual StatusCode getProperty( Property* p ) const;

47: const   Property&  getProperty( const std::string& name) const;

48: virtual StatusCode getProperty( const std::string& n, 

                                  std::string& v) const;

49: const std::vector<Property*>& getProperties() const;StatusCode 

setProperties();

50: template <class T>

  StatusCode declareProperty(const std::string& name, T& property);

51: StatusCode declareRemoteProperty(const std::string& name,

           IProperty* rsvc, const std::string& rname = "") const;

52: /// Methods for IInterface

53: unsigned long addRef();

54: unsigned long release();

55: StatusCode queryInterface(const IID& riid, void**);

56:

57: protected:

58:   bool isInitialized( ) const;

59:   void setInitialized( );

60:   bool isFinalized( ) const;

61:   void setFinalized( );

62: private:

63: // Data members not shown

64: Algorithm(const Algorithm& a);   // NO COPY ALLOWED

65: Algorithm& operator=(const Algorithm& rhs); // NO ASSIGNMENT ALLOWED};

Listing 3.1  The definition of the Algorithm base class.
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which they point are self explanatory. Services may be located by name using the templated 

service() function in line 23 or by using the serviceLocator() accessor method on line 36, as 

described in Section 10.2. Line 24 declares a facility to modify the message output level from within 

the code (the message service is described in Section 10.4).

Creation of sub algorithms  The methods on lines 38 to 39 are intended to be used by a derived class 

to manage sub-algorithms, as discussed in section 3.4.

Declaration and setting of properties  A concrete algorithm must declare its properties to the 

framework using the templated declareProperty method (line 50), as discussed in Section 3.3.2 

and Section 10.3.1. The Algorithm base class then uses the setProperties() method (line 49) to 

tell the framework to set these properties to the values defined in the job options file. The methods in 

lines 42 to 49 can later be used to access and modify the values of specific properties, as explained in 

Section 10.3.2.

Filtering  The methods in lines 14 to 19 are used by sequencers and filters to access the state of the 

algorithm, as discussed in Section 3.5.

3.3  Derived algorithm classes

In order for an algorithm object to do anything useful it must be specialised, i.e. it must extend (inherit 

from, be derived from) the Algorithm base class. In general it will be necessary to implement the 

methods of the IAlgorithm interface, and declare the algorithmÕs properties to the property 

management machinery of the Algorithm base class. Additionally there is one non-obvious technical 

matter to cover, namely algorithm factories.

3.3.1 Creation (and algorithm factories)

A concrete algorithm class must specify a single constructor with the same parameter signature as the 

constructor of the base class. 

In addition to this, a concrete algorithm factory must be provided. This is a technical matter which 

permits the application manager to create new algorithm objects without having to include all of the 

concrete algorithm header files. From the point of view of an algorithm developer it implies adding 

three lines into the implementation file, of the form:

where Ò ConcreteAlgorithmÓ should be replaced by the name of the derived algorithm class (see 

for example lines 10 and 11 in Listing 3.2 below).

#include "GaudiKernel/AlgFactory.h"

...

static const AlgFactory<ConcreteAlgorithm>  s_factory;

const IAlgFactory& ConcreteAlgorithmFactory = s_factory;
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3.3.2 Declaring properties

In general, a concrete algorithm class will have several data members which are used in the execution 

of the algorithm proper. These data members should of course be initialized in the constructor, but if 

this was the only mechanism available to set their value it would be necessary to recompile the code 

every time you wanted to run with different settings. In order to avoid this, the framework provides a 

mechanism for setting the values of member variables at run time. 

The mechanism comes in two parts: the declaration of properties and the setting of their values. As an 

example consider the class TriggerDecision in Listing 3.2 which has a number of variables whose 

value we would like to set at run time.

The default values for the variables are set within the constructor (within an initialiser list). To declare 

them as properties it suffices to call the declareProperty() method. This method is templated to 

take an std::string as the first parameter and a variety of different types for the second parameter. 

The first parameter is the name by which this member variable shall be referred to, and the second 

parameter is a reference to the member variable itself.

In the example we associate the name Ò PassAllModeÓ to the member variable m_passAllMode, 

and the name Ò MuonCandidateCutÓ to m_muonCandidateCut. The first is of type boolean and 

the second an integer. If the job options service (described in Section 10.3 on page 101) finds an option 

in the job options file belonging to this algorithm and whose name matches one of the names associated 

Listing 3.2  Declaring member variables as properties.

1: //------- In the header file --------------------------------------//

2: class TriggerDecision : public Algorithm {

3:

4: private:

5:   bool m_passAllMode;

6:   int m_muonCandidateCut;

7:   std::vector m_ECALEnergyCuts;

8: }

9: //------- In the implementation file -------------------------------//

10: static const AlgFactory<TriggerDecision>  s_factory;

11: const IAlgFactory& TriggerDecisionFactory = s_factory;

12:

13: TriggerDecision::TriggerDecision(std::string name, ISvcLocator *pSL) :

14:   Algorithm(name, pSL), m_passAllMode(false), m_muonCandidateCut(0) {

15:   m_ECALenergyCuts.push_back(0.0);

16:   m_ECALenergyCuts.push_back(0.6);

17:

18:   declareProperty(ÒPassAllModeÓ, m_passAllMode);

19:   declareProperty(ÒMuonCandidateCutÓ, m_muonCandidateCut);

20:   declareProperty(ÒECALEnergyCutsÓ, m_ECALEnergyCuts);

21: }

22:

23: StatusCode TriggerDecision::initialize() {

24: }
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with a member variable, then that member variable will be set to the value specified in the job options 

file.

3.3.3 Implementing IAlgorithm 

Any concrete algorithm must implement the three pure virtual methods initialize(), 

execute() and finalize() of the IAlgorithm interface. For a top level algorithm, i.e. one 

controlled directly by the application manager, the methods are invoked as is described in section 2.6. 

This dictates what it is useful to put into each of the methods.

Initialization   Figure 3.1 shows an example trace of the initialization phase.In a standard job the 

application manager will initialize all top level algorithms exactly once before reading any event data. 

It does this by invoking the sysInitialize() method of each top-level algorithm in turn, in which 

the framework takes care of setting up internal references to standard services and to set the algorithm 

properties (using the mechanism described in Section 10.3.1 on page 101). At the end, 

sysInitialize() calls the initialize() method, which can be used to do such things as 

creating histograms, or creating sub-algorithms if required (sub-algorithms are discussed in 

Section 3.4). If an algorithm fails to initialize it should return StatusCode::FAILURE. This will 

cause the job to terminate. 

Execution  The guts of the algorithm class is in the execute() method. For top level algorithms this 

will be called once per event for each algorithm object in the order in which they were declared to the 

application manager. For sub-algorithms (Section 3.4) the control flow may be as you like: you may 

call the execute() method once, many times or not at all.

Just because an algorithm derives from the Algorithm base class does not mean that it is limited to 

using or overriding only the methods defined by the base class. In general, your code will be much 

better structured (i.e. understandable, maintainable, etc.) if you do not, for example, implement the 

execute() method as a single block of 100 lines, but instead define your own utility methods and 

classes to better structure the code.

If an algorithm fails in some manner, e.g. a fit fails to converge, or its data is nonsense it should return 

from the execute() method with StatusCode::FAILURE. This will cause the application 

manager to stop processing events and end the job. This default behaviour can be modified by setting 

the <myAlgorithm>.ErrorMax job option to something greater than 1. In this case a message will 

be printed, but the job will continue as if there had been no error, and just increment an error count. The 

job will only stop if the error count reaches the ErrorMax limit set in the job option.

The framework (the Algorithm base class) calls the execute() method within a try/catch clause. This 

means that any exception not handled in the execution of an Algorithm will be caught at the level of 

sysExecute() implemented in the base class. The behaviour on these exceptions is identical to that 

described above for errors. 

Finalization  The finalize() method is called at the end of the job. It can be used to analyse 

statistics, fit histograms, or whatever you like. Similarly to initialization, the framework invokes a 

sysFinalize() method which in turn invokes the finalize() method of the algorithm and of 

any sub-algorithms.
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Optionally, the methods beginRun() and endRun() can also be implemented. These are called at 

the beginning and the end of the event loop respectively.

Figure 3.1 Algorithm initialization.
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Monitoring of the execution (e.g. cpu usage) of each Algorithm instance is performed by auditors under 

control of the Auditor service (described in Section 10.7 on page 116). This monitoring can be turned 

on or off with the boolean properties AuditInitialize, AuditExecute, AuditFinalize.

The following is a list of things to do when implementing an algorithm.

¥ Derive your algorithm from the Algorithm base class.

¥ Provide the appropriate constructor and the three methods initialize(), execute() 

and finalize().

¥ Make sure you have implemented a factory by adding the magic two lines of code (see 

Section 3.3.1).

3.4  Nesting algorithms

The application manager is responsible for initializing, executing once per event, and finalizing the set 

of top level algorithms, i.e. the set of algorithms specified in the job options file. However such a 

simple linear structure is very limiting. You may wish to execute some algorithms only for specific 

types of event, or you may wish to ÒloopÓ over an algorithmÕ s execute method. Within the Athena 

application framework the way to have such control is via the nesting of algorithms or through 

algorithm sequences (described in section 5.5). A nested (or sub-) algorithm is one which is created by, 

and thus belongs to and is controlled by, another algorithm (its parent) as opposed to the application 

manager. In this section we discuss a number of points which are specific to sub-algorithms.

In the first place, the parent algorithm will need a member variable of type Algorithm* (see the code 

fragment below) in which to store a pointer to the sub-algorithm.

The sub-algorithm itself is created by invoking the createSubAlgorithm() method of the 

Algorithm base class. The parameters passed are the type of the algorithm, its name and a reference 

to the pointer which will be set to point to the newly created sub-algorithm. Note that the name passed 

into the createSubAlgorithm() method is the same name that should be used within the job 

options file for specifying algorithm properties.

The algorithm type (i.e. class name) string is used by the application manager to decide which factory 

should create the algorithm object. 

Algorithm* m_pSubAlgorithm;   // Pointer to the sub algorithm

                              // Must be a member variable of the parent class

std::string type;             // Type of sub algorithm

std::string name;             // Name to be given to subAlgorithm

StatusCode sc;                // Status code returned by the call

sc = createSubAlgorithm(type, name, Algorithm*& m_pSubAlgorithm);       
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The execution of the sub-algorithm is entirely the responsibility of the parent algorithm whereas the 

initialize() and finalize() methods are invoked automatically by the framework as shown 

in Figure 3.1. Similarly the properties of a sub-algorithm are also automatically set by the framework.

Note that the createSubAlgorithm() method returns a pointer to an Algorithm object, not an 

IAlgorithm interface. This means that you have access to the methods of both the IAlgorithm 

and IProperty interfaces, and consequently as well as being able to call execute() etc. you  may 

also change the properties of a sub-algorithm during the main event loop as explained in Section 10.3.1. 

Note also that the vector of pointers to the sub-algorithms is available via the subAlgorithms() 

method.

3.5  Algorithm sequences, branches and filters

A physics application may wish to execute different algorithms depending on the physics signature of 

each event, which might be determined at run-time as a result of some reconstruction. This capability is 

supported in Athena through sequences, branches and filters. A sequence is a list of Algorithms. Each 

Algorithm may make a filter decision, based on some characteristics of the event, which can either 

allow or bypass processing of the downstream algorithms in the sequence. The filter decision may also 

cause a branch whereby a different downstream sequence of Algorithms will be executed for events 

that pass the filter decision relative to those that fail it. Eventually the particular set of sequences, filters 

and branches might be used to determine which of multiple output destinations each event is written to 

(if at all). This capability is not yet implemented but is planned for a future release of Athena.

A Sequencer class is available in the GaudiAlg package which manages algorithm sequences 

using filtering and branching protocols which are implemented in the Algorithm class itself. The list 

of Algorithms in a Sequencer is specified through the Members property. Algorithms can call 

setFilterPassed( true/false ) during their execute() function. Algorithms in the 

membership list downstream of one that sets this flag to false will not be executed, unless the 

StopOverride property of the Sequencer has been set, or the filtering algorithm itself is of type 

Sequencer and its BranchMembers property specifies a branch with downstream members. Please 

note that, if a sub-algorithm is of type Sequencer, the parent algorithm must call the 

resetExecuted() method of the sub-algorithm before calling the execute() method, otherwise 

the sequence will only be executed once in the lifetime of the job!

An algorithm instance is executed only once per event, even if it appears in multiple sequences. It may 

also be enabled or disabled, being enabled by default. This is controlled by the Enable property. 

Enabling and disabling of algorithm instances is a capability that is designed for a future release of 

Athena that will include an interactive scripting language.

The filter passed or failed logic for a particular Algorithm instance in a sequence may be inverted by 

specifying the :invert optional flag in the Members list for the Sequencer in the job options file.

A Sequencer will report filter success if either of its main and branch member lists succeed. The two 

cases may be differentiated using the Sequencer branchFilterPassed() boolean function. If 
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this is set true, then the branch filter was passed, otherwise both it and the main sequence indicated 

failure.

The following examples illustrate the use of sequences with filtering and branching.

3.5.1 Filtering example

Listing 3.3 is an extract of the job options file of the AlgSequencer example: a Sequencer 

instance is created (line 2) with two members (line 5); each member is itself a Sequencer, 

implementing the sequences set up in lines 7 and 8, which consist of Prescaler, EventCounter 

and HelloWorld algorithms. The StopOverride property of the TopSequence is set to true, 

which causes both sequences to be executed, even if the first one indicates a filter failure. 

The Prescaler and EventCounter classes are example algorithms distributed with the 

GaudiAlg package. The Prescaler class acts as a filter, passing the fraction of events specified by 

the PercentPass property (as a percentage). The EventCounter class just prints each event as it 

is encountered, and summarizes at the end of job how many events were seen. Thus at the end of job, 

the Counter1 instance will report seeing 50% of the events, while the Counter2 instance will 

report seeing 10%.

Note the same instance of the HelloWorld class appears in both sequences. It will be executed in 

Sequence1 if Prescaler1 passes the event. It will be executed in Sequence2 if Prescaler2 

passes the event only if Prescaler1 failed it.

3.5.2 Sequence branching

Listing 3.4 illustrates the use of explicit branching. The BranchMembers property of the 

Sequencer specifies some algorithms to be executed if the algorithm that is the first member of the 

branch (which is common to both the main and branch membership lists) indicates a filter failure. In 

Listing 3.3  Example job options using Sequencers demonstrating filtering

1: ApplicationMgr.DLLs  += { "GaudiAlg" }; 

2: ApplicationMgr.TopAlg = { "Sequencer/TopSequence" };

3:

4: // Setup the next level sequencers and their members

5: TopSequence.Members = {"Sequencer/Sequence1", "Sequencer/Sequence2"};

6: TopSequence.StopOverride = true;

7: Sequence1.Members = {"Prescaler/Prescaler1", "HelloWorld", 

"EventCounter/Counter1"};

8: Sequence2.Members = {"Prescaler/Prescaler2", "HelloWorld", 

"EventCounter/Counter2"};

9:

10: Prescaler1.PercentPass = 50.;

11: Prescaler2.PercentPass = 10.;
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this example the EventCounter instance Counter1 will report seeing 80% of the events, whereas 

Counter2 will report seeing 20%.

Listing 3.5 illustrates the use of inverted logic. It achieves the same goal as the example in Listing 3.4 

through use of two sequences with the same instance of a Prescaler filter, but where the second 

sequence contains inverted logic for the single instance.

Listing 3.4  Example job options using Sequencers demonstrating branching

1: ApplicationMgr.DLLs  += { "GaudiAlg" }; 

2: ApplicationMgr.TopAlg = { "Sequencer" };

3:

4: // Setup the next level sequencers and their members

5: Sequencer.Members = {"HelloWorld", "Prescaler",   

"EventCounter/Counter1"};

6: Sequencer.BranchMembers = {"Prescaler", "EventCounter/Counter2"};

7:

8: Prescaler.PercentPass = 80.;

Listing 3.5  Example job options using Sequencers demonstrating inverted logic

1: ApplicationMgr.DLLs  += { "GaudiAlg" }; 

2: ApplicationMgr.TopAlg = { "Sequencer/Seq1", "Sequencer/Seq2" };

3:

4: // Setup the next level sequencers and their members

5: Seq1.Members = {"HelloWorld", "Prescaler", "EventCounter/Counter1"};

6: Seq2.Members = {"HelloWorld", "Prescaler:invert", 

"EventCounter/Counter2"};

7:

8: Prescaler.PercentPass = 80.;
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Chapter 4  

Scripting

4.1  Disclaimer

Athena scripting support is available in experimental form. User 

feedback is required to define the best approach and backwards 

compatibility can not always be guaranteed for future versions of the 

scripting facilities. Functionality is likely to change rapidly, so 

users should check with the latest release notes for changes or new 

functionality that might not be documented here.

4.2  Overview

A scripting service for Athena can be provided in several possible ways. In order to gain experience and 

to find out what is best, the following is available in the prototype which uses Python[4] as the scripting 

language and interactive interpreter:

¥ A Python script that starts and runs Athena. This way, Python is on par with Athena.

¥ A Python scripting service that is run from Athena, which is closer to the design philosophy of 

Athena and the underlying GAUDI architecture.

For the second case, in the current implementation, the Python scripting can be started explicitly by 

specifying it as the runable in your jobOptions.txt file or implicitly by giving the Athena executable a 

Python script. Athena will then set the proper options for you.

From a technical point of view, more funtionality (read: code) can be put on the Python side in the first 

case. In the second case, the scripting service will be more restricted and therefore easier replaced by a 
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different scripting language. However, considering that Athena is written in C++ and considering that 

Python is a more portable and much more productive programming language, paying the upfront cost 

of keeping the scripting service generic and as much functionality as possible in C++, is unlikely to pay 

off in the long run. Unless, of course, Athena ends up supporting a myriad of scripting services.

Each of the methods, that were mentioned, of enabling Python scripting will be described in this 

chapter. The Python scripting language itself will not be described in detail here, but only a brief 

overview, sufficient to write scripts for Athena, will be presented.

4.3  Python overview

Python is a full-flexed, interpreted, open source, free programming langauge. In it youÕll find all the 

programming elements you need, either in the language or in so-called Python modules (libraries). The 

complete Python language is available for use, but the main parts that are needed for writing Athena 

scripts are basic function calls, object creation, and member selection. Next to standard types such as 

double and int, the string and list builtin types are often useful. Python allows you to use other builtin 

collection classes like tuples and dictionaries, and you can define your own functions and classes.

Like many other scripting languages, Python uses dynamic typing (ie. you donÕt need to declare any of 

your variables) and is rather generous with implicit conversions. Memory management is done for you. 

Further, Python provides for many ways of exploring the run-time environment from the interpreter 

prompt (which looks like Õ>>>Õ). Python is extensible by means of modules and interfaces very easily 

to other popular programming languages.

When writing code, be aware that Python uses explicit indentation to indicate the scope of a block. 

Blocks are not needed when you write simple Athena scripts, so just make sure that you start all 

statements on the first character position. Python does not require an end-of-line nor end-of-statement 

character, except when opening a block.

A basic function call is very similar to what you would find in other languages: funcname( arglist ), 

where "arglist" is a comma-separated list of arguments that are passed to the function. Objects are 

created by calling the class name like a function and assigning the result to a variable: varname = 

ClassName( arglist ), where "arglist" is again a comma-separated list of arguments. Object members 

are selected using the .operator (dot-operator, like in Java and C/C++). Members may include data 

types (including objects) as well as functions.

Character strings are constructed by enclosing text in between single (Õ) or double (") quotes. Lists are 

expandable arrays and are constructed by opening with a "[" followed by the comma-seperated 

elements and closed by a "]" ("[]" is the empty list). Both strings and lists can be concatenated using the 

+operator, or you can append to a string or list variable by using the +=operator.

Tips: use "#" to indicate the start of a comment. The comment extends to the end of the line, nest, and 

can not be carried with a backslash. Use the "print" command to sent string output to the screen.
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For examples of actual Python code, please refer to the listings that follow or look at any of the .py files 

in the Athena distribution. More information on Python is available on http://www.python.org, which 

includes an up to date documentation of the available modules, and in many books on the language.

4.4  Using Python scripting

Three different mechanisms are available, in the current implementation of Athena, for enabling Python 

scripting. The methods are:

1. Use the Ôathena.pyÕ script to run Athena/GAUDI from Python.

2. Replace, on the command line, the job options text file with a Python script.

3. Use a job options text file which hands control over to the Python shell once the initial 

configuration has been established.

The 2nd and 3th method are very similar. The only difference being who specifies the Python scripting 

service as the runable (Athena or the user). The first method is the most powerful and easiest to 

develop. ItÕs also the recommend method, but it has a few issues when debugging, see below.

4.4.1 Using Python to drive Athena

The Ôathena.pyÕ script is fully backwards compatible with the Ôathena.exeÕ executable: you can 

use it to drive Athena with a job options text file. Instead, or on top of that, you can also specify any 

number of Python scripts that need to be executed, see Listing 4.1

Notes:

1. When the script is run with no arguments, it will look for the default jobOptions.txt file, start 

up Athena, and if it found the default file, run it. If it didnÕt find any default file, it will present 

you with the Python prompt and you can take it from there.

2. Same as [1], except that an explicit job options text file is specified. The file must exist (if it 

doesnÕt, the script will exit) and Athena is run in batch mode.

3. Any number of Python scripts can be run, the file extension .py is used to detect Python 

scripts. The scripts are executed in order and the first is expected to call ÔtheApp.setup( 

MONTECARLO )Õ or ÔtheApp.setup( ZEBRA )Õ, depending on your needs, before 

instantiating/using any services or algorithms. This minor wart is expected to go away in a 

future installment

Listing 4.1  Using Python to drive Athena

athena.py                                                              [1]

athena.py myJobOptions.txt                                             [2]

athena.py myScript.py [myScript2.py [myScript3.py [...]]]              [3]
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If you include a .txt file on the command line in [3] it is assumed to be a job options text file and 

treated accordingly. In all cases, any other kind of file will be seen as an error and will stop the script.

Debugging a script is different from debugging an application because your debugger wonÕt find any 

symbols in the script, causing it to complain. You can run the debugger with this script in two ways. 

First, the more "classical" approach (using gdb as an example):

1. Start the debugger with ÔpythonÕ as the executable: gdb python

2. Specify the program arguments: (gdb) set args -itx athena.py [<scripts>]

3. Run the program like youÕre used to: (gdb) run

Alternatively, you can specify the Ô-dÕ option to Ôathena.pyÕ. This will start Athena, spawn the 

debugger (default: dbg, specify Ô-d dbxÕ or anything else you might like on Solaris), and give you the 

prompt of the debugger just before Athena would be starting to run the algorithms. You can alternate 

between the Python and gdb prompts by hitting ^C in Python or typing ÔcontinueÕ on the dbg prompt, 

unless youÕre running of a job options text file only, in which case you wonÕt get to the Python prompt.

If your final Python script is not ended with a call to ÔtheApp.exit()Õ, youÕll be left with the 

Python prompt after execution of all scripts.

4.4.2 Using a Python script for configuration and control

Currently, this implementation is flawed due to a few inconsistensies in GAUDI. You should only use it 

if you intend to use the McEventSelector. YouÕll likely have problems if you want to use the ZebraTDR 

facilities instead. It hasnÕt been tested, though. It might work.

The necessity for using a job options text file for configuration can be avoided by specifying a Python 

script as a command line argument as shown in Listing 4.2.

Notes:

1. The file extension .py is used to identify the job options file as a Python script. All other 

extensions are assumed to be job options text files.

This approach may be used in two modes. The first uses such a script to establish the configuration, but 

results in the job being left at the Python shell prompt. This supports interactive sessions. The second 

specifies a complete configuration and control sequence and thus supports a batch style of processing. 

The particular mode is controlled by the presence or absence of Athena-specific Python commands 

described in Section 4.8.  

Listing 4.2  Using a Python script for job configuration

athena MyPythonScript.py                                               [1]
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4.4.3 Using a job options text file for configuration with a Python interactive shell

Python scripting is enabled when using a job options text file for job configuration by adding the lines 

shown in Listing 4.3 to the job options file.

Notes:

1. This entry specifies the component library that implements Python scripting. If other DLLs 

are specified first, then care should be taken to use the +=operator syntax in order not to 

overwrite the other component libraries.

2. This entry specifies the use of the Python scripting implementation as the run manager.

Once the initial configuration has been established by the job options text file, control will be handed 

over to the Python shell. It is possible to run in batch mode, still: simply pipe the Python script, as is 

shown in Listing 4.4.

4.5  Prototype functionality

The functionality of the prototype is limited to the following capabilities. This list will be added to as 

new capabilities are made available:

1. The ability to read and store basic Properties for framework components (Algorithms, 

Services, Auditors) and the main ApplicationMgr that controls the application. Basic 

properties are basic type data members (int, float, etc.) or SimpleProperties of the components 

that are declared as Properties via the declareProperty() function.

2. The ability to retrieve and store individual elements of array (list) properties.

3. The ability to specify a new set of top level Algorithms.

4. The ability to add new services and component libraries and access their capabilities

5. The ability to specify a new set of members or branch members for Sequencer algorithms.

6. The ability to specify a new set of output streams.

Listing 4.3  Job Options text file entries to enable Python scripting

ApplicationMgr.DLLs    = { "GaudiPython", "McEventSelector };         [1]

ApplicationMgr.Runable = "PythonScriptingSvc";                        [2]

Listing 4.4  Specifying a job options file for application execution

athena [job options file] < MyPythonScript.py                         [1]
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7. The ability to specify a new set of "AcceptAlgs", "RequireAlgs", or "VetoAlgs" properties for 

output streams.

4.6  Property manipulation

An illustration of the use of the scripting language to display and set component properties is shown in 

Listing 4.5:

Listing 4.5  Property manipulation from the Python interactive shell

>>>theApp.algorithms()                                                 

[1][2]

(’TopSequence’, ’Sequence1’, ’Sequence2’)

>>> theApp.services()                                                  [3]

(’MessageSvc’, ’JobOptionsSvc’, ’EventDataSvc’, ’EventPersistencySvc’, 

’DetectorDataSvc’, ’DetectorPersistencySvc’, ’HistogramDataSvc’, 

’NTupleSvc’, ’IncidentSvc’, ’ToolSvc’, ’HistogramPersistencySvc’, 

’ParticlePropertySvc’, ’ChronoStatSvc’, ’RndmGenSvc’, ’AuditorSvc’, 

’ScriptingSvc’, ’RndmGenSvc.Engine’)

>>> TopSequence.properties()                                           [4]

{’ErrorCount’: 0, ’OutputLevel’: 0, ’BranchMembers’: [], 

’AuditExecute’: 1, ’AuditInitialize’: 0, ’Members’: 

[’Sequencer/Sequence1’, ’Sequencer/Sequence2’], ’StopOverride’: 1, 

’Enable’: 1, ’AuditFinalize’: 0, ’ErrorMax’: 1}

>>> TopSequence.OutputLevel                                            [5]

’OutputLevel’: 0

>>> TopSequence.OutputLevel=1                                          [6]

>>> TopSequence.Members=[’Sequencer/NewSeq1’, ’Sequencer/NewSeq1’]     [7]

>>> TopSequence.properties()

{’ErrorCount’: 0, ’OutputLevel’: 1, ’BranchMembers’: [], 

’AuditExecute’: 1, ’AuditInitialize’: 0, ’Members’: 

[’Sequencer/NewSeq1’, ’Sequencer/NewSeq1’], ’StopOverride’: 1, 

’Enable’: 1, ’AuditFinalize’: 0, ’ErrorMax’: 1}

>>> theApp.properties()                                                [8]

{’JobOptionsType’: ’FILE’, ’EvtMax’: 100, ’DetDbLocation’: ’empty’, 

’Dlls’: [’HbookCnv’, ’SI_Python’], ’DetDbRootName’: ’empty’, 

’JobOptionsPath’: ’jobOptions.txt’, ’OutStream’: [], 

’HistogramPersistency’: ’HBOOK’, ’EvtSel’: ’NONE’, ’ExtSvc’: 

[’PythonScriptingSvc/ScriptingSvc’], ’DetStorageType’: 0, ’TopAlg’: 

[’Sequencer/TopSequence’]}

>>>
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Notes:

1. The ">>>" is the Python shell prompt.

2. The set of existing Algorithms is given by the theApp.algorithms() command. 

3. The set of existing Services is given by the theApp.services() command.

4. The values of the properties for an Algorithm or Service may be displayed using the 

<name>.properties() command, where <name> is the name of the desired Algorithm 

or Service.

5. The value of a single Property may be displayed (or used in a Python expression) using the 

<name>.<property> syntax, where <name> is the name of the desired Algorithm or Service, 

and <property> is the name of the desired Property.

6. Single valued properties (e.g. IntegerProperty) may be set using an assignment 

statement. Boolean properties use integer values of 0 (or FALSE) and 1 (or TRUE). Strings 

are enclosed in "Õ" characters (single-quotes) or """ characters (double-quotes).

7. Multi-valued properties (e.g. StringArrayProperty) are set using "[...]" as the array 

(list) delimiters.

8. The theApp object corresponds to the ApplicationMgr and may be used to access its 

properties.

4.7  Synchronization between Python and Athena

It is possible to create new Algorithms or Services as a result of a scripting command. Examples of this 

are shown in Listing 4.6:

If the specified Algorihm or Service already exists then its properties can immediately be accessed. 

However, in the prototype the properties of newly created objects cannot be accessed until an 

equivalent Python object is also created. This restriction will be removed in a future release. 

This synchronization mechanism for creation of Python Algorithms and Services is illustrated in 

Listing 4.7:

Listing 4.6  Examples of Python commands that create new Algorithms or Services

>>> theApp.ExtSvc += [ "ANewService" ]

>>> theApp.TopAlg  = [ "TopSequencer/Sequencer" ]

Listing 4.7  Examples of Python commands that create new Algorithms or Services

>>> theApp.ExtSvc += [ "ANewService" ]

>>> ANewService    = Service( "ANewService" )                            [1]

>>> theApp.TopAlg  = [ "TopSequencer/Sequencer" ]

>>> TopSequencer   = Algorithm( "TopSequencer" )                        [2]

>>> TopSequencer.properties()
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Notes:

1. This creates a new Python object of type Sequencer, having the same name as the newly 

created Athena Sequencer.

2. This creates a new Python object of type Algorithm, having the same name as the newly 

created Athena Algorithm. 

The Python commands that might require a subsequent synchronization are shown in Listing 4.8:

4.8  Controlling job execution

This is very limited in the prototype, and will be replaced in a future release by the ability to call 

functions on the Python objects corresponding to the ApplicationMgr (theApp), Algorithms, and 

Services.

In the prototype, control is returned from the Python shell to the Athena environment by the command 

in Listing 4.9:

Notes:

1. This is a temporary command that will be replaced in a future release by a more flexible 

ability to access more functions of the ApplicationMgr. "nEvents" is the number of events 

that should be processed.

This will cause the currently configured event loop to be executed, after which control will be returned 

to the Python shell.

Listing 4.8  Examples of Python commands that might create new Algorithms or Services

theApp.ExtSvc           += [...]

theApp.TopAlg            = [...]

Sequencer.Members        = [...]

Sequencer.BranchMembers  = [...]

OutStream.AcceptAlgs     = [...]

OutStream.RequireAlgs    = [...]

OutStream.VetoAlgs       = [...]

Listing 4.9  Python command to resume Athena execution

>>> theApp.run( nEvents )                                              [1]
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Typing Ctrl-D (holding down the Ctrl key while striking the D key) at the Python shell prompt will 

cause an orderly termination of the job. Althernatively, the command shown in Listing 4.10 will also 

cause an orderly application termination.

This command, used in conjunction with the theApp.run() command, can be used to execute a Python 

script in batch rather than interactive mode. This provides equivalent functionality to a job options text 

file, but using the Python syntax. An example of such a batch Python script is shown in Listing 4.11:

Listing 4.10  Python command to terminate Athena execution

>>> theApp.exit()                                                      [1]

Listing 4.11  Python batch script

>>> theApp.TopAlg = [ "HelloWorld" ]

    [other configuration commands]

>>> theApp.run( nEvents )                             

>>> theApp.exit()
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Chapter 5  

StoreGate - the event data access model

5.1  Overview

A more detailed version of this chapter is contained in the document The ATLAS Data Model UserÕs 

Guide, which is available in the ATLAS CVS repository at:

offline/AtlasDoc/doc/DataModel

5.2  The Data Model Architecture

5.2.1 Data Objects and Algorithms

 The Gaudi software architecture belongs to the blackboard family: data objects produced by 

knowledge modules (called Algorithms in Gaudi) are posted to a common "in-memory data base" from 

where other modules can access them and produce new data objects. 

This model greatly reduces the coupling between knowledge modules containing the algorithmic code 

for analysis and reconstruction, in that one knowledge module does not need anymore to know which 

specific module can produce the information it needs nor which protocol it must use to obtain it (the 

"interface explosion" problem described in component software systems). Algorithmic code is known 

to be the least stable component of software systems and the blackboard approach has been very 

effective at reducing the impact of this instability, from the Zebra system of the FORTRAN days to the 

Java Data Objects architecture.    
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5.2.2 StoreGate: the Atlas Transient Data Store

The Transient Data Store (TDS) is the blackboard of the Gaudi architecture: an Algorithm creates a data 

object and post it onto the TDS to allow other Algorithms to access it1.

Once an object is posted on to the store, the TDS takes ownership of it and manages its lifetime 

according to preset policies, removing, for example, a TrackCollection when a new event is read. The 

TDS also manages the conversion of a data object from/to its persistent form and provides therefore an 

API to access data stored on persistent media.

 StoreGate (SG) is the Atlas implementation of the TDS. It manages the data objects in transient form, it 

steers their transient/persistent conversion and it provides a dictionary allowing to identify and retrieve 

data objects in memory. The SG design and implementation was largely driven by a few design 

concepts that are worth describing as a way of introduction.

5.2.2.1  Avoid User-defined Keys

 The disadvantage of the data/knowledge objects separation is the need for knowledge objects to 

identify data objects to be posted on or retrieved from the blackboard. It is crucial to develop a data 

model optimized for the required access patterns and yet flexible enough to accommodate the 

unexpected ones.

SG addresses this problem with a two-step approach: it defines a natural identifier mechanism for data 

objects and it transparently associates  to each data object a default value of this identifier allowing 

developers to register and retrieve data objects without having to identify them explicitly.  

The first component of the identifier is the data object type. Experience shows that HEP developers 

tend to group the objects they work on into collections, most often STL vectors. As a result the TDS 

will often contain a single instance of a data object type (say a TrackCollection or several related 

ones (e.g. a TrackCollection for each component of the Inner Detector). The SG retrieve interface 

covers these two use cases

     DataHandle<TrackCollection> theTrackColl; //STL forward_iterator

     sg->retrieve(theTrackColl);  //get the (default) TrackCollection

     DataHandle<TrackCollection> beginTrackColls, endTrackColls;

     sg->retrieve(beginTrackColls, endTrackColls); //get all TrackColls

Type-based identification is not always sufficient. For example the TDS may contain several equivalent 

instances of a TrackCollection produced by alternative tracking algorithms. Therefore we need to add a 

second component to our identification mechanism: the identifier of the Algorithm instance that 

produced the data object we want2.In the spirit of working with user types, the SG will allow 

developers to augment this history identifier with a generic key optimized for their access patterns.

1.  To be precise the current TDS implements only a "passive" blackboard, since Algorithms do not (yet) react to TDS

events (e.g. executing after a data object is registered into the TDS)

2.  Notice that we need to identify the instance rather than the class. In an often quoted use case, clients may want to

distinguish among tracks reconstructed by the same tracking algorithm using different jet-cone sizes.
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5.2.2.2  Work with User Types

The success of the STL and of other public domain template libraries means that it has become vital to 

design an open system that can work with generic types that export an interface, in particular the STL  

containers, rather than forcing data objects to import a common interface. SG adapts its behavior to the 

functionality each data object exports. The only SG-imposed constraint on a data object1 is to be an 

STL Assignable type.

5.2.2.3  Control Object Access and Creation

The TDS is the main channel of communication among modules.  A data object is often the result of a 

collaboration among several modules. SG allows a module to use transparently a data object created by 

an upstream module or read from disk.

A Virtual Proxy defines and hides the cache-fault mechanism: upon request2, a missing data object 

instance can be transparently created and added to the TDS, presumably retrieving it from a persistent 

data-base or, in principle, even reconstructing it on demand.  

To ensure reproducibility of data processing, a data object should not be modified after it has been 

published to the store, the same handle/proxy scheme is used to enforce an ‘‘almost const’’ access 

policy: modules downstream of the publisher are only allowed to retrieve a constant iterator to the 

published object.

5.2.2.4  Support Inter-object Relationships

SG supports uni-directional inter-objects relationships, or links. A link is a persistable pointer. If the 

linked object is a data object then the handle/proxy mechanism described above is also used to 

implement the link. But typically links will refer to objects that are not data objects but are contained 

within a data object. The SG knows how to get to the container and the container knows how to return 

an element given its index. The job of the link is to find out the value of the index, persistify it and, later 

on, pass it on to the container and get back the linked object. 

5.3  Data Objects

As we mentioned earlier SG is designed to work with user types rather than requiring them to 

implement a C++ interface. Basically any STL Assignable (i.e. any type which has an  operator = 

and/or a copy constructor) can be stored into SG and hence is a Data Object.

1.  this does not mean that the data model, simulation and reconstruction groups should not issue design guidelines to

ensure that ATLAS data objects behave consistently in terms of memory management and persistability

2.   Currently the proxy uses lazy instantiation (i.e. the object is created only when the handle is dereferenced).
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A Data Object is a struct or class that encapsulates and "publishes" the result of some arbitrarily 

complex processing performed by one or more Algorithms. A Data Object should present a predictable, 

stable and efficient interface to  client Algorithms.

A Data Object is often persistable and in this case the interface must be sufficient to allow a  Converter 

to capture the Data Object state on disk and to restore it. The best advice to the Data Object designer is 

to keep them simple1.

5.3.1 Using Containers as Data Objects

Experience shows that most Data Objects are containers (of hits, cells, tracks, muons,...). In particular 

STL containers are perfectly valid Data Objects and can be stored into SG. 

The developer of a Data Object container must decide if the container they want to store is a Value 

Container or a View Container and then are they are strongly advised to use the tools and policies SG 

provides to implement them.

5.3.1.1  View Containers

A View Container is a container of object references. The referred-to objects  are not owned by the 

View Container and will, in general, continue to exist after the View goes out of scope. As an example 

the list of cells which were used to reconstruct a photon is a View on the container(s) of reconstructed 

calorimeter cells. A View Container that does not need to be persistified can be implemented using 

plain C++ pointers, e.g. std::list<const CaloCell*>. A persistable view should be 

implemented using DataLinks.

5.3.1.2   Value Containers

A Value Container is a  container that owns its elements "by-value": the elements cease to exist when  

the container does. For example the LAr cell recontruction may add the cells it makes to a 

LArCellContainer that is later recorded on SG. When a LArCellContainer goes out of scope 

all LArCells it contains are deleted. 

Whenever possible LArCellContainer should be implemented as a standard STL container of 

LArCell objects (e.g. as a std::vector<LArCell>). 

Unfortunately this can not be done when LArCell is abstract: a polymorphic container (as containers 

of abstract elements are called) can only be implemented using STL as a container of pointers, e.g. 

std::vector<LArCell*>. But, as we mentioned in the previous section, a STL container of 

pointers is not a Value Container: it does not own its elements.  

1.  As a rule of thumb, if you need to include  more than a couple of Atlas-specific header files to define a Data Object

interface and its implementation, you should probably move some complexity out of it
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To support polymorphic Value containers, SG provides two class templates, DataList, 

DataVector and a reference counted pointer DataPointer in terms of which the three containers 

are implemented: 

    std::vector< DataPtr<T> >   DataVector<T>

    std::list< DataPtr<T> >     DataList<T>

    std::map< DataPtr<K,T> >    DataMap<K,T>  

DataPtr<T> behaves like a plain C++ pointer T* and can be freely assigned to and from a T*. 

    typedef DataVector<CaloCell> CellContainer;

    // this is completely equivalent to 

    // typedef std::vector< DataPtr<CaloCell> > CellContainer;

    CellContainer caloCells;

    intV.reserve(nCells);

    for (int i=0; i<nCells; ++i) {

        CaloCell* pThisCell = fillThisCell(i);

        caloCells.push_back(pThisCell);

    }

    .....

    CellContainer::const_iterator it(caloCells.begin());

    CellContainer::const_iterator iEnd(caloCells.end());

    while (it!=iEnd) {

        const CaloCell& thisCell = **it;  //vector of pointers!

        std::cout << thisCell.energy() << std::endl;

        ++it;

    }

when CellContainer goes out of scope, the vector destructor will delete the 

DataPtr<CaloCell>. In normal usage1 this will trigger the deletion of the CaloCell instance as 

desired.

In summary to define a Value Container of instances of a concrete class use plain STL containers. Use 

containers of DataPtrs for polimorphic Value Containers. If you prefer using the shorthands DataVector 

and DataList please remember that a DataVector<CaloCell> has the semantics of a 

std::vector<CaloCell*> and not of std::vector<CaloCell>.

5.3.2 Describing Data Objects to SG

StoreGate uses a compact, technology-independent mechanism2 to describe object types with two 

integer identifiers: a CLID and a VERSION. CLID is a 16-bit integer which uniquely identifies an 

object type across all Atlas software. The CLID of say EventInfo should not change from one 

1.  As always with ref-counted pointers care must be take to avoid cyclical dependencies (a points to b which points back

to a).

2.  Adapted from Gaudi Persistency Framework and capable of interacting with it.



page  48   

release to another. If EventInfo changes in a non-backward compatible way a new VERSION 

number must be assigned to it1.

 SG provides a cpp preprocessor macro to define CLID and VERSION for a type

EventInfo.h:

class EventInfo {

 ...

}

#ifndef TOOLS_CLASSID_TRAITS_H

#include ‘‘StoreGate/tools/ClassID_traits.h’’

#endif

CLASS_DEF(EventInfo, 2101, 0)

Although the intention is to have them generated automatically using the Atlas Dictionary, as of release 

3.1.0 these macros have to be explicitely added by each Data Object developer to the class header file, 

hence CLASS_DEF(EventInfo, 2101, 0) should be placed in EventInfo.h. For templated 

Data Objects (e.g. std::vector<Track>) or for "external" Data Objects {e.g. HepMC::Vertex) 

of which we can’t modify the header file, we recommend adding the CLASS_DEF macros into a 

separate header file per Data Object package.

MyPackage_ClassDefs.h:

#ifndef TOOLS_CLASSID_TRAITS_H

#include ‘‘StoreGate/tools/ClassID_traits.h’’

#endif

CLASS_DEF(std::list<MyContObj>, 8003, 1)

CLASS_DEF(std::vector< DataPtr<MyAbstractCell> >, 8004, 1)

5.3.3 Data Object Creation and Ownership of Data Objects

Data Objects must be created on the heap using the new command:

    DataVector<LArCell> *pCells = new DataVector<LArCell>;

Data Objects recorded to SG are owned by SG and the creator must not delete them.

5.4  Accessing Data Objects

This section is a tutorial on how to use StoreGate to access DataObjects from user Algorithms. The 

examples in it are based on the ones in the AthenaExamples/AthExStoreGateExample 

Tutorial package.

1.  As of release 3.1.0 the VERSION number is not yet used by SG.
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As a preliminary, each user algorithm must locate the relevant StoreGateSvc instances in its initialize 

method. For example:

StatusCode SGRead::initialize()

{

  StatusCode sc;

   ....

  //locate event store pointer and cache it in a SGread data member

  sc = service("StoreGateSvc", p_eventStore); 

  if (sc.isFailure()) {

      log << MSG::ERROR

  << "Unable to retrieve pointer to Event StoreGateSvc"

  << endreq;

      return sc;

  }

  //locate detector store pointer and cache it in a SGread data member

  sc = service(‘‘DetectorStore", p_detectorStore);

  if (sc.isFailure()) {

      log << MSG::ERROR

  << "Unable to retrieve pointer to Detector StoreGateSvc"

  << endreq;

      return sc;

  }

5.4.1 Recording a Data Object

To record a Data Object we must provide StoreGateSvc with a pointer to the Data Object created on the 

heap1, and, optionally with a key.

StatusCode SGWrite::execute() {

   ...

  MyDataObj *pdobj = new MyDataObj;     // Create a DataObject

  pdobj->val(42);                       // Set its internal state

   ...

  StatusCode sc = p_eventStore->record(pdobj, dataObjKey);

  if ( sc.isFailure() ) 

  {

    log << MSG::ERROR 

<< " could not register object " << dataObjKey  

<< endreq;

    return StatusCode::FAILURE;

  }

   ...

}

1.  i.e. using the operator new
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here pdobj is the pointer to a MyDataObj created on the heap (i.e. using new), and dataObjKey is 

a reference to a valid key object. Usually a key is an instance of std::string but any class that can 

be converted to and from a string can be used as key1. The combination of type and key are the SG 

object identifier and they must be unique.

Once a Data Object has been recorded, SG takes ownership of it. Never delete a recorded  Data Object. 

5.4.1.1  Locking a Data Object

We strongly recommend to lock a Data Object once it is ready to be used by client algorithms. The 

preferred way to achieve this is to add a bool flag to the record invocation: 

  static const bool ALLOWMODS(false);

  StatusCode sc = p_eventStore->record(pdobj, dataObjKey, ALLOWMODS);

Once a Data Object has been locked, downstream clients will not be able to modify its contents (see 

next section).

One can also lock an already recorded object using 

  StatusCode sc = p_eventStore->setConst(pdobj);

where pdobj is the pointer to the Data Object in memory.

We are considering to enforce Data Object locking in a forthcoming release, by disallowing to write out 

"non-const" Data Objects.

5.4.2 Retrieving a Data Object

Data Objects in SG are retrieved by type. SG sets a pointer to the requested object(s) of a given type. 

5.4.2.1  Retrieving the default instance of a given type

SG defined the default DataObject of a given type as the last one recorded. To retrieve the default 

instance, one passes a pointer to the Data Object to SG "keyless" retrieve method to set

  const DataVector<MyElement> *pcoll(0);

  if (m_eventStore->retrieve(pcoll).isSuccess()) {

//use pcoll

  } else {

    log << MSG::ERROR 

        << "can’t retrieve default DataVector<MyElement>" << endreq;

    return StatusCode::FAILURE;

1.  In the near future (release 5.x?) we plan to allow to use integers as keys. Eventually any type that can be hashed into

an integer will be usable as a key.
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  }

Notice that you can retrieve a Data Object which has not yet been read from disk: SG will message the 

persistency service and the appropriate converter1 will create the Data Object. 

5.4.2.2  Retrieving a keyed instance of a given type

  const MyDataObj *pdobj(0);

  if (m_eventStore->retrieve(pdobj, m_DataObjKey).isSuccess()) {...}

Since two Data Objects of the same type can not have the same key, you are assured of being returned a 

unique Data Object (provided of course it exists).

5.4.2.3  Retrieving a Data Object to modify it

If a Data Object has not yet been locked it is possible to modify it passing to retrieve a (non-const) 

pointer that SG will set

  DataVector<MyElement> *pcoll(0);

  if (m_eventStore->retrieve(pcoll).isSuccess()) {

     collHandle->push_back(new MyElement(....));

  } else { ...  }

if the DataVector has been already locked the retrieve will fail. 

Once again, SG owns all stored Data Objects: never delete a Data Object using the pointer set by 

retrieve. 

5.4.2.4  Retrieving {\em all} instances of a given type

To retrieve all instances of MyDataObj in the store, create two DataHandle<MyDataObj> and let 

record set them

    DataHandle<MyDataObj> dbegin; 

    DataHandle<MyDataObj> dend; 

    StatusCode sc = storeGateSvc()->retrieve(dbegin, dend);

    if (sc.isFailure())

    { 

       log << MSG::ERROR << "Error Retrieving MyDataObj’s" << endreq;

    }

\end{verbatim}

DataHandle is a standard forward iterator2: the pair{\tt dbegin, dend} allows to 

iterate over all stored instances of {\tt

1.  SG mantains a list of DataProxy objects, each one of these managing the life-cycle of the Data Object they represent.

Besides containing the transient key of a Data Object and its CLID, a DataProxy has a pointer to the OpaqueAddress of

its Data Object which is passed to the appropriate converter when the Data Object has to be created \ref{UG}.
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MyDataObj} 

\begin{verbatim}

    while(dbegin != dend)    // Loop Over \dobjs

    {

      dbegin->do_something(); //read MyDataObj if needed 

      ++dbegin;

    } 

notice that the Data Object pointed to by a DataHandle will not be accessed (and read from disk if 

necessary) until the DataHandle is dereferenced.

5.4.2.5  Checking if a Data Object is in the store

SG provides two contains method sthat allow to check whether a given Data Object has already 

been stored. The typical use case is as follows

if (!p_SG->contains<MyDataObject>(myKey)) {

   MyDataObject* pMDO = createMDO();

   if(!p_SG.record(pMDO, myKey).isSuccess()) {return StatusCode::FAILURE;}

}

as usual the "keyless" version of contains is also provided to check whether any Data Object of a 

given type has been stored.

5.5  Using DataLinks to persistify references

In C++ we describe associations among objects using pointers or, less frequently, references. For 

example, a cluster object  may refer to its list of associated cells by holding a vector of Cell pointers 

class Cluster {

  ...

 private:

     ...

   std::vector<Cell*> m_myCells;

};

Unfortunately a plain C++ pointer can not be simply written out and read back from disk as is: it is 

valid only within the context of a running job.

To address this limitation we introduced  DataLink and EementLink, two class templates which 

can be dereferenced like a pointer and can be read and written using  various persistency mechanisms.  

The DataLink template allows to point to a data object, using its unique type/key combination. 

2.  Hence {\tt dend} points past the end of the list of returned objects: dereferencing {\tt dend} will have unpredictable,

but most likely fatal, results.
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ElementLink is used to point to an element of a container recorded in StoreGate. ElementLink, 

by default, allows to link to elements of any STL-derived sequence (e.g. std::vector and  

std::list, but also DataVector and DataList).

5.5.1 Creating a DataLink to a data object

DataLinks can be set to refer to a data object either by providing a pointer to the data object or its 

StoreGate identifier (type/key). 

5.5.1.1  Construct a DataLink using a C++ pointer

 Most often the developer filling a DataLink will have a C++ pointer to the data object they want to 

create an association to. For example let’s consider the PileUpEventInfo class. It carries a list of 

references to the EventInfo data objects of the physics and background events used in the overlay 

process:

class PileUpEventInfo {

  ...

 private:

  DataLink<EventInfo> m_origEvent;

  std::list<DataLink<EventInfo> > m_subEvents;

};

  ...

}

we can create a DataLink<EventInfo> from an EventInfo* and add it to m_subEvents

  std:list<EventInfo*> pSubEvts;

  ... fill pSubEvts ...

  for (int i=0, i<nSubEvts, i++) {

     m_subEvents.push_back(DataLink<EventInfo>(*pSubEvts[i]));

  }

Of course the pointer used to set the DataLink<EventInfo> must refer to an EventInfo which 

has been or will be recorded into StoreGate. Both for convenience and for efficiency reasons, 

DataLink will not look-up the data object is pointing to, until the DataLink itself has to be  

persistified, or until the user invokes

DataLink<{...}>::dataID() 

At that point, if the data object is not found in the store an exception will be thrown.

5.5.1.2  Construct a DataLink using its StoreGate Key

If you know the key identifying a data object in the store you can also use it to create a link to it:

  DataLink<EventInfo> m_origEvent;
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 ...

  m_origEvent.toStorableObject(‘‘PhysicsTDR’’);

 ...     

5.5.2 Creating a Link to an Element of a Container

Quite often the linked object is not a data object but an element of a data object (typically a STL 

container). In the example of the Cluster class the linked objects are Cell objects contained in a 

DataVector<CaloCell>, which behaves like a std::vector<CaloCell*> and hence it is an 

example of STL Sequence.  To make the Cluster class above persistable, we replace the Cell 

pointers with ElementLinks:

class Cluster {

   typedef DataVector<CaloCell> CaloCellContainer;

   std::vector< ElementLink<CaloCellContainer> > m_myCells;

   void addCells() {

     const CaloCellContainer* pCont;

     if ((p_eventStore->retrieve(pCont)).isSuccess()) {

unsigned int nCells(pCont->size());

for (unsigned int iCell=0; iCell<nCells; ++iCell) {

           if (weLikeThisCell((*pCont)[iCell])) {

              ElementLink<CaloCellContainer> linkCell;

              linkCell.toIndexedElement(*pCont, iCell);

              m_myCells.push_back(linkCell);

           }

        }

     }

   }

};

Please notice the difference between DataLink<CaloCellContainer>, a pointer to a  

CaloCellContainer, and ElementLink<CaloCellContainer> which behaves like a 

pointer to an element of a CaloCellContainer (hence like a CaloCell**).

5.5.3 ElementLinks to other Containers

The header file StoreGate/tools/DeclareIndexingPolicy.h provides two macros that 

"inform" SG that a given container is (or behaves like) an std::map or std::set. For example  

 in MyHitMap.h

 typedef std::map<Identifier32, LArHit*> MyHitMap;

 #include ‘‘StoreGate/tools/DeclareIndexingPolicy’’

 CONTAINER_IS_MAP( MyHitMap );

 in MyUniqueInts.h

 typedef std::set<unsigned int> MyUniqueInts;

 #include ‘‘StoreGate/tools/DeclareIndexingPolicy’’
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 CONTAINER_IS_SET( MyUniqueInts );

although it should be redundant, for completeness DeclareIndexingPolicy also provides a 

CONTAINER_IS_SEQUENCE macro. 

Advanced developers can also specialize ElementLink to link to elements of arbitrary containers

from GeneratorObjects/McEventLinks.h

 typedef ElementLink<McEventCollection,  \\target container

                     DataProxyStorage<McEventCollection>, \\default

                     GenParticleIndexing> \\HepMC indexing policy

         GenParticleLink

A description of how to define a specialized indexing policy like GenParticleLink is beyond the 

scope of this document. You are welcome to contact the authors for help.

5.5.4 Accessing DataLinks

DataLinks are dereferenced as pointers: in the Cluster class above you can 

void Cluster::workWithCells() {

  ...

  const Cell& cell33 = *(m_myCells[33]);

  ...

  unsigned int i(0), nCells(m_myCells.size());

  while(i<nCells) clusterRawEnergy += (**(m_myCells[i++])).energy();

}

notice that, unlike DataHandles and plain pointers, DataLink is not an iterator: you can not 

increment it or perform any "pointer-arithmetic" on it. 

Notice also how the ElementLink<CaloCellContainer> must be dereferenced twice: the 

ElementLink is a pointer to an element of a vector of CaloCell*, hence it is equivalent to a 

CaloCell**.

5.5.5 DataLinks Persistency

For stream-based persistency (e.g. root, Gaudi generic converters or plain files) SG provides templated 

inserter (operator >>) and extractor (operator <<) operators:

void Cluster::Streamer(TBuffer& tbuf) {

  typedef ElementLink< std::vector< DataPtr<CaloCell> > > CellLink_t;

  ...

  if (tbuf.IsReading()) {

    std::vector<CellLink_t>::size_type i(0), nCells(0);

    tbuf >> nCells;

    for(;i<nCells;++i) {

       CellLink_t inLink;
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       tBuf >> inLink;

       m_myCells.push_back(inLink);

    }

    ...

  } else if (tbuf.IsWriting()) {

    std::vector<CellLink_t>::size_type i(0), nCells(m_myCells.size());

    tbuf<< nCells;

    while(i<nCells) tBuf << m_myCells[i++];  

    ...

  }

}

To support other persistency technologies, DataLink provides a method1: 

//StoragePolicy method returning the data object key

const ID_type& dataID() throw(std::logic_error); //ID_type is a string

ElementLink provides also another method that returns the index of the element inside the container 

(this is e.g. an unsigned int for a Sequence and the key_type for a std::map)

//IndexingPolicy method returning the element index inside the data

//object container. 

index_type index() const {return m_key;} 

//index_type is unsigned int for sequences, key_type for maps and sets

5.6  History

This section is incomplete.

1.  actually inherited from its StoragePolicy
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Chapter 6  

Data dictionary

6.1  Overview

One of the central components of Athena is the data dictionary that is used both for coupling together 

the C++ and Python (scripting) environments, but also as part of the auto-generation of persistency 

converters for elements of the Event Data Model.

6.2  How to write/read data via POOL

There are basically three steps needed to be able to work with POOL:
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1. The objects to be stored in POOL must be "described" in a data  dictionary which exists in 

memory when a program runs. As far as  POOL is concerned, this dictionary contains the 

description of the  types of all attributes for the objects to be stored. What is meant by  

description is just the size and position of an attribute. Other  applications, e.g. python 

scripting, will also need to have methods  described in order to be able to call them.

 This description is  built by creating a data dictionary  filler, which is just a library that when 

loaded into memory will fill the memory resident dictionary with descriptions for  a set of 

classes. 

 Conventions:

Where to create the dictionaries: Each XXXEvent,  YYYDetDescr, ZZZConditions 

package defining data objects to be stored will create its own dictionary filler  library 

by applying CMT lcgdict pattern. There are exceptions to  this rule for packages that 

do not include framework-related dependencies. For example, there is a 

DetDescrDictionary package for  defining the Identifier-related classes.

How to use classes defined in different dictionaries:  Each package should only 

"describe" classes that it  contains. (This is done in a selection file.) To "use" a  

description in another library, one simply needs to "load" the  other library. This 

"loading" of the dictionaries is temporarily  done by explicitly linking the converters 

(see next step) to the  dictionary  filler libs, so that one only specifies to load a 

particular  converter. This must be specified by hand for the converters. An  

improved automation will eventually be deployed so that this linking  will no longer 

be required.

2. Objects are written and read to POOL via converters of the  AthenaPoolCnvSvc. For most 

objects generic converters are sufficient,  thus we have provided a CMT pattern which can be 

applied. (See  generating converters.)  However there are situations where the converters need 

to be  customized, for example, to set the values of transient detector  description pointers 

when event objects are read in. (See writing custom converters.)

 Conventions:

As opposed to the dictionary fillers which are generated in  the data packages, the 

POOL converters are grouped together into  separate packages according to 

subsystem, reconstruction, etc. For example packages that exist today are:

EventAthenaPool

RecAthenaPool

InDetEventAthenaPool

MuonEventAthenaPool

3. Finally, one needs to specify the job options for reading and  writing. This is described in 

setting up the joboptions.

 Last but not least, we maintain a changing list of caveats, problems and work-arounds which hopefully 

diminish as Atlas and POOL software improves.
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6.2.1  Creating a data dictionary filler

To explain how to generate a dictionary filler for a data package, we take as an example the 

SimpleTrack package. The basic procedure is to use the cmt pattern "lcgdict" to generate a dictionary 

for a package with data objects. This creates a shared library which is dynamically loadable. There is 

also a small job option file generated which adds the library name to a list of libs to be loaded by the 

AthenaSealSvc. If this job option file is included from one’s application joboptions, then 

AthenaSealSvc will load the lib at initialization time.

 Note that a corresponding pattern, poolcnv, which today is in the AtlasPOOL package, is used to 

generate pool converters. This is described in the AtlasPoolUtilities package.

The procedure:



page  60   

1. Use the SimpleTrack packageas an example. The relevant portion of the requirements file is 

shown in Listing 6.1. You will need to add a use to  AtlasSEAL and apply the pattern 

lcgdict. To do the latter, you need  to create a <package>Dict.h file and a 

selection.xml file. 

2. Create a single <package>Dict.h which just includes the other  header (.h) files. An 

example is shown in Listing 6.2:

This creates a single C++ file to compile and avoids multiple definitions of symbols in the lib 

which may arise if each .h is listed separately. Note that the file <package>Dict.h is 

given as an argument for the lcgdict pattern (see Listing 6.1).

Listing 6.1  Package SimpleTrack Requirements file

package SimpleTrack

author  Laurent Vacavant <Laurent.Vacavant@cern.ch>

use AtlasPolicy AtlasPolicy-01-* 

use DataModel DataModel-00-* Control 

use CLIDSvc CLIDSvc-00-* Control

library SimpleTrack *.cxx

apply_pattern installed_library

private 

use AtlasSEAL   AtlasSEAL-00-*   External -no_auto_imports

# Pattern to build the dict lib. User should create a single header

# file: <package>Dict.h which includes all other .h files. See MissingETDict

# A selection file must be created by hand. This file lists the

# classes to be added to the dictionary, and which fields are

# transient. It should be put in ../<package> dir and is conventionally 

called

# selection.xml.

apply_pattern lcgdict dict=SimpleTrack selectionfile=selection.xml 

headerfiles="../SimpleTrack/SimpleTrackDict.h" 

Listing 6.2  Example <package>Dict.h file

#ifndef SIMPLETRACK_SIMPLETRACKDICT_H

#define SIMPLETRACK_SIMPLETRACKDICT_H

#include "SimpleTrack/SimpleTrackCollection.h"

#endif 
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3. Create a selection.xml file in the header directory and specify it as the 

selectionfile argument to the lcgdict pattern. The selection file contains a list of 

classes for each of the data member types. An example of this is shown in Listing 6.3.

4. Not all data members are intended to be written out. For example, a class might have a pointer 

to an object that is only used in transient memory. If the value is not intended to be written out, 

then one should declare it transient, e.g. for the EventInfo class has a pointer to subEvent 

for pileup which is only needed in memory. One declares this in the selection file as illustrated 

in Listing 6.4.

One should make sure that the default constructor sets this to a reasonable value for objects 

that are read back in. (Note: more sophisticated initialization of transient members will be 

addressed in a future version of this documenation.)

5. You must specify the an "id" for all persistent data  objects. (NOTE: we expect that this 

requirement to create an id  will eventually be removed and no id will be needed.) For 

example,

    <class name="SimpleTrackCollection" 

id="9E3595D6-1362-429A-8BA2-3396C93D6BA0" />

 For each "data object" with a CLID, an id number must be added as an "id" attribute. This 

area is "changing" in POOL. At the moment, POOL 1.2.0, one must use a universally unique 

identifier (UUID) which can be obtained with

 > uuidgen    

5089b086-8b04-4696-a254-f5ce380f536e

and the resulting number is copied and made into uppercase.

Listing 6.3  Example selection.xml file

<lcgdict>

  <class name="SimpleTrackCollection" 

id="9E3595D6-1362-429A-8BA2-3396C93D6BA0" />

  <class name="SimpleTrack" />

  <class name="DataVector<SimpleTrack>" />

  <class name="std::vector<SimpleTrack*>" />

</lcgdict>

Listing 6.4  Specifying data member overrides

 <class name="PileUpEventInfo::SubEvent" >

    <field name="pSubEvtSG" transient="true" />

  </class>
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6. To check that the selection file is ok, you should run a check with  the AthenaSealSvc which 

loads the SimpleTrackDict and checks all  fields to see that their type is defined.

 do "source setup.sh" and "gmake" and modify Load_AthenaSealSvc_joboptions.txt which 

you will get in your run directory.

Uncomment "AthenaSealSvc.CheckDictionary = true;", set the output level to 2 and add in 

includes for any other dictionary fillers that you want to check, or that your dictionary needs, 

e.g. has inherited or embedded types. NOTE THE .txt IS IN /dict/!!! Note here we have added 

the DetDescrDictionary for the Identifier classes and SimpleTrack.

Listing 6.5  Example of checking the selection file

In TestRelease req:

use AthenaCommon AthenaCommon-* Control

use AthenaSealSvc AthenaSealSvc-* Control

# Need something, e.g. the following, to pull in libT_Histoxx.so

use TestEvent TestEvent-* Event 

Listing 6.6  Job Options file 

//

// JobOptions for the loading of the AthenaSealSvc

//

#include "$ATHENASEALSVCROOT/share/AthenaSealSvc_joboptions.txt"

#include "$DETDESCRDICTIONARYROOT/dict/DetDescrDictionary_joboptions.txt"

#include "$SIMPLETRACKROOT/dict/SimpleTrack_joboptions.txt"

// Set to output level to debug for more information

//MessageSvc.OutputLevel      = 2;

// Check the dictionary in memory for completeness

//AthenaSealSvc.CheckDictionary = true;
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This prints out the classes and their fields and lists the classes missing (Listing 6.7).

This is the output when all fields have been defined. If there is something missing, there will 

be a message. For example, if the selection file line:

Listing 6.7  Example session to check for missing classes 

> athena.exe Load_AthenaSealSvc_joboptions.txt

...

AthenaSealSvc  INFO 

AthenaSealSvc  INFO Checking the completeness of the dictionary for all 

classes

AthenaSealSvc  INFO 

AthenaSealSvc  INFO Checking fields of class DataVector<Pixel1RawData>: ok 

AthenaSealSvc  DEBUG Fields of class DataVector<Pixel1RawData>:

AthenaSealSvc  DEBUG     m_ownPolicy          -- offset:   4 -- type: int

AthenaSealSvc  DEBUG     m_pCont              -- offset:   8 -- type: 

std::vector<Pixel1RawData*>

AthenaSealSvc  DEBUG 

AthenaSealSvc  INFO Checking fields of class DataVector<PixelRDORawData>: ok 

AthenaSealSvc  INFO Checking fields of class DataVector<SimpleTrack>: ok 

AthenaSealSvc  DEBUG Fields of class DataVector<SimpleTrack>:

AthenaSealSvc  DEBUG     m_ownPolicy          -- offset:   4 -- type: int

AthenaSealSvc  DEBUG     m_pCont              -- offset:   8 -- type: 

std::vector<SimpleTrack*>

...

AthenaSealSvc  INFO Checking fields of class SimpleTrack: ok 

AthenaSealSvc  DEBUG Fields of class SimpleTrack:

AthenaSealSvc  DEBUG     m_A0Vert             -- offset:  40 -- type: double

AthenaSealSvc  DEBUG     m_BarEnd             -- offset: 256 -- type: double

AthenaSealSvc  DEBUG     m_BremRadius         -- offset: 384 -- type: double

AthenaSealSvc  DEBUG     m_Chi2               -- offset:  32 -- type: double

AthenaSealSvc  DEBUG     m_CotThEnd           -- offset: 240 -- type: double

...

AthenaSealSvc  INFO ----->  NO Missing fields!!
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  <class name="std::vector<SimpleTrack*>" />

is missing, one will get:

where the attribute with a missing type is listed with type "[unknown]".

 Note that attributes declared as transient will have "[unknown - declared transient]".

You can add to the selection file and iterate until all problems are resolved. (It may be useful 

to look in the dictionary filler cpp file to find the right class name to use, e.g. in 

../dict/EventInfo/EventInfoDict_dict.cpp one will see that "std::basic_string" is needed for 

std::string.)

Any job option that need dict files should have:

These just add to the list of AthenaSealSvc, and this service loads the dict libs.

6.2.2  generating converters

Pool converters are automatically generated using the CMT poolcnv pattern. By convention, the 

generation is done in a single package for a number of classes. For example, the Reconstruction classes 

are done in the Reconstruction/RecAthenaPool package. We use this package as an example.

Rule 1: each class must be declared in a separate .h file. For example, 

MissingETEvent/MissingET.h defines the MissingET class and 

SimpleTrack/SimpleTrackCollection.h defines the SimpleTrack collection.

Listing 6.8  Example session to check for missing classes 

AthenaSealSvc  INFO Checking fields of class SimpleTrackCollection:

AthenaSealSvc  INFO ****> Missing type for DataVector<SimpleTrack>  m_pCont

AthenaSealSvc  DEBUG Fields of class SimpleTrackCollection:

AthenaSealSvc  DEBUG     m_ownPolicy          -- offset:   4 -- type: int

AthenaSealSvc  DEBUG     m_pCont              -- offset:   8 -- type: 

[unknown]

Listing 6.9  Example session to check for missing classes 

#include "$ATHENASEALSVCROOT/share/AthenaSealSvc_joboptions.txt"

#include "$EVENTINFOROOT/dict/EventInfo_joboptions.txt"

... (for each new dict)
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In the requirements file of converter package one has:

The "use AthenaPoolUtilities" is needed to get the poolcnv pattern. The other uses should 

refer to packages with data objects which need converters.

One should provide the list of header files for the pattern "poolcnv". These can be taken from a 

number of packages following the syntax of "-s=${<package>_root}/<package> <hdr1> 

<hdr2>" which can be repeated.

Finally, one should temporarily link against the dictionary libraries containing the object descriptions 

needed by the converter. This is done by adding the library names in the list of 

<package>_linkopts as seen above. Note that this will be automated in the future so that the 

dictionaries will be loaded when needed. When this happens the <package>_linkopts will need 

to be removed.

6.2.3 writing custom converters

6.2.3.1  when to use custom converters

There are some situations where one needs to write a custom converter for a class which we divide into 

two categories:

Listing 6.10  Convert package requirements file 

package RecAthenaPool

author David Rousseau <rousseau@lal.in2p3.fr>

use AtlasPolicy          AtlasPolicy-01-* 

use AthenaPoolUtilities  AthenaPoolUtilities-00-*   Database/AthenaPOOL

use MissingETEvent       MissingETEvent-00-*        Reconstruction

use SimpleTrack          SimpleTrack-00-*           Reconstruction

# temporarily add in explicit link to dictionary

macro_append RecAthenaPool_linkopts " -lSimpleTrackDict -lMissingETEventDict 

"

apply_pattern poolcnv files="-s=${MissingETEvent_root}/MissingETEvent 

MissingET.h

                             -s=${SimpleTrack_root}/SimpleTrack 

SimpleTrackCollection.h "
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1. Modifying objects being read/written: For example when  one declares attributes as transient 

in the selection.xml file they  are not written out. When reading in the default constructor is  

called which may initialize the transient attributes. However, if  one needs to set the transient 

attributes externally, e.g. with DetDescr information, after an object is read in, then a custom  

converter is needed.

2. Fine control over what is written: In some  situation, one needs fine control over the I/O. One 

example is the  case of the InDetRawDataContainers for the InDet RDOs. These  containers 

group RDOs into RDO collections, which are in turn stored  in the InDetRawDataContainers. 

These containers have special behavior when reading in from the byte-stream - collections are  

converted on-demand as clients request them from the  container. However for pool, one is 

interested in a bulk read/write  of the container and not interested in writing collections one by  

one. Custom converters are used here to read/write the containers and as well to initialize 

them with their required id helper.

For both of these situations one will generate a converter skeleton. The difference will be in the level of 

modification applied.

6.2.3.2  generate custom converter skeletons

Writing custom converters uses and extends the generated converters described above. To start, one 

generates these converters to use as skeletons. The procedure is:

1. Specify the header file, e.g. MyClass.h, for which one wants a  converter as  described in  

generating converters in a  converter package.

2. Run gmake ONCE in the  converter package. This will generate two files MyClassCnv.h and 

MyClassCnv.cxx in the ../pool  directory of the package. You  should move these files to the 

../src directory, modify them as  described below and save them in the cvs repository. Once 

there are MyClassCnv.h  and MyClassCnv.cxx files in the src  directory, a subsequent  gmake 

should NOT regenerate these  files in ../pool, rather the ones in the src will be used. You 

should Finally,  keep  MyClass.h in the poolcnv  pattern because it is needed for building the 

component library.
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6.2.3.3  customizing the converter skeletons

 Newly generated files are quite simple:

Listing 6.11  Converter skeletons 

MyClassCnv.h: 

#ifndef MyClassCnv_H

#define MyClassCnv_H

#include "AthenaPoolCnvSvc/T_AthenaPoolCnv.h"

#include "MyPackage/MyClass.h"

typedef T_AthenaPoolCnv<MyClass> MyClassCnv;

#endif

MyClassCnv.cxx: 

#include "MyClassCnv.h"
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The basic procedure for customization is to derive from the generic templated converter 

T_AthenaPoolCnv<MyClass>. To do so, rename the typedef to MyClassCnvBase and derive from this 

class:

Here we have added the constructor, destructor, initialize and PoolToDataObject which are probably the 

minimal changes needed to set transient attributes when reading objects from pool. initialize can be 

used to access, for example, StoreGate.

Listing 6.12  Customized converter 

MyClassCnv.h: 

//...

// We rename generated typedef to <converter>CnvBase

typedef T_AthenaPoolCnv<MyClassCnv> MyClassCnvBase;

/** 

 ** Create derived converter to customize the saving of MyClass

 **/

class MyClassCnv : public MyClassCnvBase

{

   friend class CnvFactory<MyClassCnv >;

public:

    MyClassCnv(ISvcLocator* svcloc);

    virtual ~MyClassCnv();

    /// initialization

    virtual StatusCode initialize();

    /// Extend base-class conversion method to modify when reading in

    virtual StatusCode     PoolToDataObject(DataObject*& pObj,const 

std::string &token);

private:

    /// For your private attributes

};
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 The PoolToDataObject method should be implemented as:
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Listing 6.13  Customized converter 

MyClassCnv.cxx: 

#include "MyClassCnv.h"

#include "GaudiKernel/MsgStream.h"    

#include "StoreGate/StoreGateSvc.h"   

#include "SGTools/StorableConversions.h"

// Constructor - call base constructor and initialize local attributes

MyClassCnv::MyClassCnv(ISvcLocator* svcloc) :

    // Base class constructor    

    LArCellContainerCnvBase::T_AthenaPoolCnv(svcloc){}

MyClassCnv::~MyClassCnv(){}

StatusCode MyClassCnv::initialize() {

    AthenaPoolConverter::initialize(); // Call base clase initialize

    // Get the messaging service, print where you are

    MsgStream log(msgSvc(), "MyClassCnv");

    log << MSG::INFO << "initialize()" << endreq;

    // get DetectorStore service - if needed

    StoreGateSvc *detStore;

    StatusCode sc=service("DetectorStore",detStore);

    if (sc.isFailure()) {

        log << MSG::FATAL << "DetectorStore service not found !" << endreq;

        return StatusCode::FAILURE;

    } else {

        log << MSG::DEBUG << " Found DetectorStore " << endreq;

    }   

    // Get objects from the detector store

    // ...

    log << MSG::DEBUG << "Converter initialized" << endreq;

    return StatusCode::SUCCESS;

}

StatusCode MyClassCnv::PoolToDataObject(DataObject*& pObj,const std::string 

&token) {

    // First call base class converter to get DataObject from

    // pool. Then modify as appropriate

    MsgStream log(messageService(), "MyClassCnv::PoolToDataObject" );   

    StatusCode sc = MyClassCnvBase::PoolToDataObject(pObj, token);

    if (sc.isFailure()) {

        log << MSG::FATAL << "Unable to get object from pool" << endreq;

        return StatusCode::FAILURE;

    } else {

        log << MSG::DEBUG << " Found DataObject " << endreq;

    }   

    // Convert DataObject pointer to MyClass*

    MyClass* obj=0;

    SG::fromStorable(pObj, obj );

    if(!obj) {

        log << MSG::ERROR << "  failed to cast to MyClass " << endreq ; 

        return StatusCode::FAILURE; 

    }

    // Initialize MyClass

    // ...

    return StatusCode::SUCCESS; 

}
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For more extensive customization for the converters, one may similarly modify an object before written 

out by implementing:

MyClassCnv.h: 

    /// Extend base-class conversion method for writing

    virtual StatusCode     DataObjectToPool(DataObject*  pObj,std::string 

tname);

One may also write out an object of a completely different type than MyClass. This is possible as long 

as the new class is defined in a Seal Dictionary. But because of the change in type, one will also have to 

implement the two addition methods:

MyClassCnv.h: 

    /// Must redefine placement according to type that is stored

    virtual void           setPlacement();

    /// class ID

    static const CLID& classID();

 where

MyClassCnv.cxx: 

const CLID& MyClassCnv::classID() 

{ return ClassID_traits< MyClass >::ID() ; }

must return the CLID of MyClass. For a detailed example, see the InDet RDO converters, e.g. 

PixelRDO_Container, which are in the InDetAthenaPool package.

6.2.3.4  detailed custom converter examples

For the simple case of initializing objects being read in have a look at the LArCell/LArCellContainer 

example:

¥ LArCalorimeter/LArRecEvent - defines the dictionary for LArCell  and container

¥ LArCalorimeter/LArCnv/LArAthenaPool - contains the custom converter

¥ AtlasTest/DatabaseTest/AthenaPoolTest - contains a simple  write/read example which creates 

dummy LArCells and checks that the  same one can be read back. JobOptions:  

LArCellContWriter_jobOptions.txt and  LArCellContReader_jobOptions.txt

The InDet RDOs provide an example where one writes/reads a DataVector instead of an 

IdentifiableContainer. The custom converter simply copies the RDO collections between the 

IdentifiableContainer and DataVector before write and after read.

¥ InnerDetector/InDetRawEvent/InDetRawData - defines the  dictionary for the RDOs, 

collections, containers and extra  DataVector

¥ InnerDetector/InDetEventCnv/InDetEventAthenaPool - contains the  custom converters
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¥ AtlasTest/DatabaseTest/AthenaPoolTest - contains a simple  write/read example which creates 

dummy RDOs and their collections  and checks that the same one can be read back. 

JobOptions: InDetRawDataWriter_jobOptions.txt and  InDetRawDataReader_jobOptions.txt
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6.2.4  setting up the joboptions

6.2.4.1  To write out data objects to POOL

To illustrate the job options for writing, we use RecExCommon_jobOptions.txt as an example:

Listing 6.14  RecExCommon_jobOptions.txt

//--------------------------------------------------------------

// now write out Transient Event Store content in POOL

//--------------------------------------------------------------

//

#include "AthenaPoolCnvSvc/WriteAthenaPool_jobOptions.txt"

// check dictionary

#include "$ATHENASEALSVCROOT/share/AthenaSealSvc_joboptions.txt"

AthenaSealSvc.CheckDictionary = true;

// Define the output Db parameters (the default value are shown)

PoolSvc.Output    = "SimplePoolFile.root";

// PoolSvc.DbServer  =  "db1.usatlas.bnl.gov";

// PoolSvc.DbAccount =  "athena";

// PoolSvc.DbPassword = "";

// PoolSvc.DbType    = "mysql";

// PoolSvc.ConnectionType = "MySQLCollection";

// PoolSvc.FullConnection = 

"mysql://athena:insider@db1.usatlas.bnl.gov/pool_collection";

PoolSvc.DbType     = "root";  // to define ROOT file resident collection

PoolSvc.Collection = "NewPoolTry";

// Converters:

#include "EventAthenaPool/EventAthenaPool_joboptions.txt"

#include "RecAthenaPool/RecAthenaPool_joboptions.txt"

// list of output objects key

// MissingET

Stream1.ItemList+={"3052#*"};

// EventInfo

Stream1.ItemList+={"2101#*"};

// SimpleTrackCollection

Stream1.ItemList+={"10003101#*"};

//--------------------------------------------------------------------

// switch off the writing

//ApplicationMgr.OutStream = { };
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6.2.4.2   To read back data objects from POOL

To illustrate the job options for reading, we use RecExCommon_read_jobOptions.txt as an example:

6.2.5  caveats, problems and work-arounds

o Storing pointers to objects require polymorphic classes: For classes which contain pointers to other 

objects, the classes of these objects must be polymorphic, i.e. they must have a virtual table. The 

simplest way to enforce this is to add a virtual destructor. For example:

class SimpleTrackCollection : public DataVector  {

public:

  virtual ~SimpleTrackCollection() {};

};

and

class SimpleTrack {

Listing 6.15  RecExCommon_jobOptions.txt

//--------------------------------------------------------------

// Load POOL support

//--------------------------------------------------------------

#include "AthenaPoolCnvSvc/ReadAthenaPool_jobOptions.txt"

ApplicationMgr.DLLs   += { "HbookCnv"};

// Define the input Db parameters (the default value are shown)

// PoolSvc.Output    = "SimplePoolFile.root";

// PoolSvc.DbServer  =  "db1.usatlas.bnl.gov";

// PoolSvc.DbAccount =  "athena";

// PoolSvc.DbPassword = "";

// PoolSvc.DbType    = "mysql";

// PoolSvc.ConnectionType = "MySQLCollection";

// PoolSvc.FullConnection = 

"mysql://athena:insider@db1.usatlas.bnl.gov/pool_collection";

// PoolSvc.Collection = "NewPoolTry";

PoolSvc.DbType                       = "root";  // to define ROOT file 

resident collection

EventSelector.InputCollection        = "NewPoolTry";

// Converters:

#include "$EVENTATHENAPOOLROOT/pool/EventAthenaPool_joboptions.txt"

#include "$RECATHENAPOOLROOT/pool/RecAthenaPool_joboptions.txt"

// all object on input files are read-in by default

//---------------------------------------------------------
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public:

  // ...

  // destructor

  virtual ~SimpleTrack(){};

  // ...

};

Here SimpleTrackCollection itself is the "data object" to be saved and thus must be polymorphic. And a 

DataVector is actually a collection of pointers to T, so SimpleTrack must be polymorphic as well.

 Another important implication of the polymorphic requirement is that one may NOT have a class with 

a pointer to an STL collection. For example, the following is not allowed:

class SimpleTrack {

public:

  // ...

private: 

  // Pointer to vector of hits:

  std::vector<HitOnTrack*>*  m_hits;

};

Rather one must use collections "by value":

class SimpleTrack {

public:

  // ...

private: 

  // vector of hits "by value":

  std::vector<HitOnTrack*>  m_hits;

};

The reason for this is simply that the STL collections do not have  virtual tables and thus are not 

polymorphic.

¥  Default constructor must not be private: POOL creates objects using the default constructor and then 

"fills" them by doing a memory copy of the data being read in (i.e. streaming). One consequence of this 

is that you will get a runtime error for classes where the default constructor has been made private.

¥  Too many classes with "id" defined: only the "data object" should have an id provided in the selection 

file. Otherwise pool complains when trying to write out the object. For example:

   <class name="SimpleTrackCollection" id="9E3595D6-1362-429A-8BA2-3396C93D6BA0" 

/>

   <class name="SimpleTrack" id="23EF4872-EBFB-45E7-A256-34FDF223C10E" />

 Only SimpleTrackCollection should have an id.

¥ Renaming POOL output files: What you should NOT do: Rename the first output file, 

SimplePoolFile.root, to something else, then try to recreate SimplePoolFile.root in a second job. This 

will create two physcial files with the same file ID, which will cause trouble when reading. 
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 If you do not want to modify the jobOpt when you run the second job, and you want to rename the 

output file after the first job, you should do the following:

 > mv SimplePoolFile.root AnotherPoolFile.root

 > FCrenamePFN -p SimplePoolFile.root -n AnotherPoolFile.root

 Then run the second job. After the second job, you can do the following:

 > mv SimplePoolFile.root YetAnotherPoolFile.root

 > FCrenamePFN -p SimplePoolFile.root -n YetAnotherPoolFile.root

 You can read the files (using implicite collections) with the following line:

 EventSelector.InputCollections = {

                                    "AnotherPoolFile.root", 

                                    "YetAnotherPoolFile.root"

                                  };

 in your jobOptions.

¥  Sharing POOL output files with other people: What you should NOT do: Copy only the data files, 

and forgot to copy the PoolFileCatalog.xml. 

 If you want to give your output to other people to read, all the POOL output files (*.root), and the 

PoolFileCatalog.xml should be copied over to the other person’s run directory. The same read 

jobOption can be run from the other person’s run directory. 

 If you use the absolute path in the write job, for example:

 PoolSvc.Output    = 

"/afs/cern.ch/atlas/maxidisk/d73/7.5.0/SimplePoolFile.root";

and the files are accessible by the other user, then no copying of the root data files are needed. Just copy 

the PoolFileCatalog.xml. Note that in this case, the files specified for InputCollections should have the 

absolute path too
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Chapter 7  

Detector Description

7.1  Overview

The ATLAS detector description is based upon the GeoModel geometry modeller. A more detailed 

version of this chapter is available online at:

http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/detector_description/Geometry%20Kernel%20C

lasses.doc

In particular, that document contains the full reference manual describing the classes in the Geometry 

Kernel.

7.2  About the Geometry Kernel Classes.

The geometry kernel classes are provided by the package GeoModelKernel.  These classes provide 

a set of geometrical primitives for describing detectors, and a scheme for accessing both the raw 

geometry of a detector and arbitrary subsystem-specific geometrical services.  The scheme provides a 

means of keeping the geometrical services synched to the raw geometry, while incorporating 

time-dependent alignments.  It also allows one to version the geometry of any subsystem.  

The design of these classes reflects the belief that raw geometry is highly constrained by the simulation 

engines, while the readout geometry is highly subsystem specific and has practically no constraint at 

all.  The description of both types of geometry is normally to be carried out by a subsystem specialist.  

This specialist is asked to extend  objects called GeoVDetectorElement, 

GeoVDetectorManager, and GeoVDetectorFactory, by writing  subclasses describing both 

the raw and readout geometry of his or her subsystem.  
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Thus, the simulation engines available today (Geant3 and Geant4), which fortunately have a high 

degree of conceptual commonality, basically determine the format of the raw geometry.  Every 

subsystem engineer who is responsible for describing a subdetector needs to provide one or more trees 

of raw geometry for the purpose of simulation.  These tasksÑcreating and accessing raw geometry-- 

are  required methods of the three basic base classes.  The geometry kernel classes provide a set of 

geometrical primitives to support these operations.. 

In addition, the subsystem engineer has to layer, upon this raw geometry, any detector specific readout 

services required in simulation, reconstruction, or analysis.  This is a very broad task and relies heavily 

on the creativity and intelligence of the subsystems specialist.  The specialist is asked only to provide 

access to this type of information through the same class (GeoVDetectorManager) that accesses 

the raw geometry.

The set of GeoVDetectorFactories are then all called upon during the initialization phase to 

build both raw and readout geometries.  During normal execution, messages to move various pieces of 

material to new, aligned positions will be routed from the calibration database to the detector managers 

which must respond by applying new alignment transformations at specific points in the geometry tree 

designated as alignable.  The position of one or more pieces of raw geometry moves about when the 

alignable transformations are tweaked. 

Readout geometry synchronizes itself to raw geometry by holding a pointer to a volume in the raw 

geometry tree that holds its absolute transformation with respect to world coordinates in cache.  The 

readout geometry should access this information when responding to any queries about, or relying 

upon, its absolute position.

Thus the detector managers have a dual function:  they describe the geometry (potentially misaligned) 

to the simulation, and they serve as a central store of detector-specific geometrical information which is 

accessed throughout Athena-based applications in ATLAS.

The interface to this information is largely up to the subsystem engineer. The 

GeoVDetectorFactories for each subsystem are called upon during the initialization of a service 

(GeoModelSvc) to construct geometry through a method called create().   They must provide 

access to the volumes so created, for the purpose of simulation.  The GeoModelSvc then makes the 

GeoVDetectorManagers available to a variety of different clients. 

7.3  Examples

In this section we give a few simple examples of how to use the geometry kernel.  First, we illustrate 

how to get the information into the transient representationÑthis is the job of the subsystem engineer , 

for whom this section will be very important.  Second, we illustrate how to get the information out of 

the transient representationÑthis will be important mostly for the individual who passes the description 

along to a procedure such as Geant3 or Geant4.. or one of may reconstruction tasks.
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7.3.1 Example 1:  Getting the data into the transient represention.

In this section we provide and illustrate a simple GeoVDetectorFactory subclass called a 

ToyDetectorFactory. This code describes a geometry that has 100 rings contained within a 

square box.  The ToyDetectorManager contains two different types of readout elements: 

CentralScrutinizers, and ForwardScrutinizers.  The header file for 

ToyDetectorFactory is shown in Listing 7.1:

From the header file, one can see that the subsystem engineer has created a class called 

ToyDetectorFactory, that derives from the class GeoVDetectorFactory, which is the base class for all 

subsystem-specific detector geometry factories.  The ToyDetectorFactory is required to provide the 

following methods (because the base class declares them to be abstract functions):

    virtual void create(GeoPhysVol *world);

Which builds the geometry within a containing physical volume (world volume).

Listing 7.1  Header file for ToyDetectorFactory

#include "GeoModelKernel/GeoVDetectorFactory.h"

#include "GeoModelExamples/ToyDetectorManager.h"

class ToyDetectorFactory : public GeoVDetectorFactory  {

  

   public:

    

     // Constructor:

     ToyDetectorFactory();

    

    // Destructor:

    ~ToyDetectorFactory();

    

    // Creation of geometry:

    virtual void create(GeoPhysVol *world);

    

    // Access to the results:

    virtual const ToyDetectorManager * getDetectorManager() const;

    

   private:  

    

    // Illegal operations:

    const ToyDetectorFactory & operator=(const ToyDetectorFactory &right);

    ToyDetectorFactory(const ToyDetectorFactory &right);

    

    // The manager:

    ToyDetectorManager       *detectorManager;

   

};



page  80   

The detector manager is returned from the factory and holds the entire geometry description for the 

subdetector.  The header file for ToyDetectorManager is shown in Listing 7.2:

One sees from the interface that the manager is essentially a class that permits one to add and retrieve 

bits of detector description.  Two methods, getNumTreeTops() and getTreeTop(unsigned 

int i), are required and are used to access the number of top-level physical volumes in the system 

and allow one to access sequentially each top-level physical volume.  Physical volumes, essentially, are 

positioned pieces of material with specific shape and composition.  They are explained below in more 

detail.  The raw geometry is organized in a treelikle structure, and the detector managers must provide 

Listing 7.2  Header file for ToyDetectorManager

#include "CLIDSvc/CLASS_DEF.h" 

class ToyDetectorManager;

CLASS_DEF(ToyDetectorManager, 9876, 1)

#include "GeoModelKernel/GeoVPhysVol.h"

#include "GeoModelKernel/GeoVDetectorManager.h"

#include "GeoModelExamples/CentralScrutinizer.h"

#include "GeoModelExamples/ForwardScrutinizer.h"

class ToyDetectorManager : public GeoVDetectorManager  

 

  public:

   enum Type {CENTRAL, FORWARD};

 

   // Constructor

   ToyDetectorManager(); 

   // Destructor

   ~ToyDetectorManager();

 

   // Access to raw geometry:

   virtual unsigned int getNumTreeTops() const;   

   // Access to raw geometry:

   virtual PVConstLink getTreeTop(unsigned int i) const; 

   // Access to readout geometry:

   const ForwardScrutinizer * getForwardScrutinizer(unsigned int i) const; 

   // Access to readout geometry:

   const CentralScrutinizer * getCentralScrutinizer(unsigned int i) const;   

   // Access to readout geometry:

   unsigned int getNumScrutinizers(Type type) const;

   // Add a Tree top:

   void addTreeTop(PVLink);

   // Add a Central Scrutinizer:

   void addCentralScrutinizer(const CentralScrutinizer *);

   // Add a Forward Scrutinizer:

   void addForwardScrutinizer(const ForwardScrutinizer *); 

   

 private:    

   [...]

};
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the top-level branch in the tree.  The third method in the toy detector node creates the tree of volumes. 

We shall see in detail how, shortly.  

The last three methods are not required but are provided by the subsystem engineer to describe pieces 

of readout or other detector-related geometrical information.

    unsigned int getNumScrutinizers(Type type) const

    const ForwardScrutinizer *getForwardScrutinizer(unsigned int i) const

    const CentralScrutinizer *getCentralScrutinizer(unsigned int i) const

The last three methods give access to readout geometry.  The basic pieces of readout geometry in the 

ToyDetectorManager are called ForwardScrutinizer and CentralScrutinizer.  They derive from a base 

class called GeoVDetectorElement, which stores and provides access to a pointer to a 

GeoFullVPhysVol (this is a physical volume with an absolute global-to-local coordinate transformation 

in cache). 

What kind of geometrical object are the scrutinizers?  They are meant to illustrate pieces of detector 

with both material and readout properties.  For example, in the inner detector, instead of a ÒScrutinizerÓ 

one would create perhaps a pixel detector, giving the pixel detector the properties of readout pitch along 

local x and y, number of channels in x and y, and perhaps a multiplexing scheme.  The vectors normal to 

the each side of the pixel detector could be provided through the pixel detectorsÕs interfaceÑif that is a 

useful geometrical service for the pixel detector to provideÑand could be computed from the 

full physical volumes absolute global-to-local coordinate transformation information.  In the case of a 

calorimeter, the ÒScrutinzersÓ would be replaced with a class describing a calorimeter module that 

could describe the peculiar way in which signals were summed within the calorimeter slices. And so 

forth.

Looking again at the interface to ToyDetectorManager and Factory: we wish to disable 

copying and assignment so we make these methods private and leave them unimplemented.  We also 

declare some private member data required to carry out the services described above:  a vector to hold 

the top level physical volumes, and two more to hold the lists of forward and central scrutinizers. Next 

we shall see how to implement this detector factory.

The implementation of the ToyDetectorFactory is shown in Listing 7.3.  Note how the factory 

creates both raw geometry and readout geometry and puts it in the manager.  In principal, one can tailor 

the code so that the detector factory itself determines the shape of the whole detector geometry, so that 

alternate geometries can be constructed simply by creating different types of factories and using them at 

run time.  

The ToyDetectorFactory shown in Listing 7.3 is a simplified version of actual code that can be 

found in the Atlas repository.  This simplified version does not contain illustration of certain advanced 

featuresÑnamely , access to the material manager, interface to Athena, insertion of the managers within 
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Storegate, and parametrization of volumes using GeoSerialTransformer —that are present in the 

full version.

7.3.2 Example 2:  Getting the data out of the transient representation.

This example is missing.

Listing 7.3  Implementation of ToyDetectorFactory

 #include "GeoModelExamples/ToyDetectorFactory.h"

 #include "GeoModelExamples/CentralScrutinizer.h"  

 #include "GeoModelKernel/GeoMaterial.h"  

 #include "GeoModelKernel/GeoBox.h"  

 #include "GeoModelKernel/GeoTube.h"  

 #include "GeoModelKernel/GeoLogVol.h"  

 #include "GeoModelKernel/GeoNameTag.h"  

 #include "GeoModelKernel/GeoPhysVol.h"  

 #include "GeoModelKernel/GeoFullPhysVol.h"  

 #include "GeoModelKernel/GeoTransform.h"  

 #include "GeoModelKernel/GeoSerialDenominator.h"  

 #include "GeoModelKernel/GeoAlignableTransform.h"  

 

 ToyDetectorFactory::ToyDetectorFactory()

    :detectorManager(NULL){}

 ToyDetectorFactory::~ToyDetectorFactory()

 {}

 const ToyDetectorManager * ToyDetectorFactory::getDetectorManager() const {

   return detectorManager;

 } 

 //## Other Operations (implementation)

 void ToyDetectorFactory::create(GeoPhysVol *world)

 {

    detectorManager=new ToyDetectorManager();

   

//------------------------------------------------------------------------//  

// Get the materials that we shall use (material manager from Storegate!) //

//------------------------------------------------------------------------//  

   const GeoMaterial *air  = materialManager->getMaterial("std::Air");

   const GeoMaterial *poly =  

                      materialManager->getMaterial("std::Polystyrene");

   // Next make the box that describes the shape of the toy volume:                                                                                   

   const GeoBox      *toyBox    = new GeoBox(800*cm,800*cm, 1000*cm);                  
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7.4  An Overview of the Geometry Kernel

In this section we give a short overview of all of the pieces of the geometry kernel.  These pieces are 

described in detail in the online manual.  In this section our goal is to describe the Òbig pictureÓ.  The 

GeoModel class tree is shown in  Figure 9.1.

Many of the classes in the library represent objects which are reference counted; these all inherit from 

RCBase.  Others represent geometrical shapes; these inherit from GeoShape.  Others represent 

objects that can be assembled into a geometry graph; these inherit from GeoGraphNode.  

7.4.1 The Detector Store Service and Detector Managers 

The detector store service is not part of GeoModel per se, but rather an interface from GeoModel to 

Athena and Storegate.  It is a Storegate service running within Athena and providing access to all 

detector information.  The service can be accessed in the following way, which is typical of all 

Storegate services:

    StoreGateSvc *detStoreSvc;

Figure 7.1 The GeoModel Class Tree

RCBase----GeoLogVol

      |---GeoMaterial

      |---GeoElement

      |---GeoShape--------GeoShapeSubtraction

      |             |-----GeoShapeIntersection

      |             |-----GeoShapeUnion

      |      |-----GeoShapeShift

      |       |-----GeoBox

      |      |-----GeoCons

      |      |-----GeoPara

      |             |-----GeoPgon
      |      |-----GeoTrap

      |      |-----GeoPCon

      |             |-----GeoTube

      |             |-----GeoTrd

      |

      |--GeoGraphNode-----GeoNameTag

                    |-----GeoSerialDenominator

     |-----GeoTransform-----------GeoAlignableTransform

                    |-----GeoVPhysVol------------GeoVFullPhysVol-------GeoFullPhysVol

                    |                |-----------GeoPhysVol

                    |

                    |-----GeoSerialTransformer

GeoNodeAction---------GeoCountVolAction

             |---------GeoAccesssVolumeAction

             |---------GeoClearAbsPosAction

GeoVolumeAction-------TemplateVolAction

And also:

GeoPath, GeoTraversalState, Query<class T>, GeoAbsPosInfo, GeoXF::Pow
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    StatusCode status = service(ÒDetectorStoreÓ,detStoreSvc);

The service hold several important objects.  The first is the world physical volume, the common 

ancestor of all physical volumes within the system.   This object has type GeoModelExperiment, which 

is a Storegate-compatible physical volume.  It can be accessed like this:

    const DataHandle<GeoPhysVol>  world;

    StatusCode status = detStoreSvc->retrieve(world,ÓATLASÓ);

From there, one may navigate the physical volume tree.  The other objects that one can access through 

the detector store are the detector nodes, which are the master copy of all readout information.  For 

example, for the liquid argon calorimeter, this might look like this:

    const DataHandle<AbsLARDetectorNode> *laRNode;

    StatusCode status = detStoreSvc->retrieve(laRNode,ÓLArÓ);

The strings used to retrieve detector nodes are assigned subsystems engineers.  No catalogue can be 

published at this time.  The detector factories are created by an interface called a tool, which instantiates 

the detector, and causes it to build its geometry within the world physical volume, and then also records 

the readout geometry within the detector store.  The class ToyDetectorTool provides an example.  

It is in the source tree, under DetectorDescription/GeoModel/GeoModelExamples.

7.4.2 Material Geometry

Material geometry consists of a set of classes that bears a large resemblance to the material geometry 

within some flavour of GEANT.  These classes, however, are designed to take a minimal size in 

memory.  This requirement determines the basic data structure used to hold the data for the geometry 

description.  That structure is a graph of nodes consisting of both volumes and their properties.  The tree 

is built directly and accessed in a way that provides users access to volumes and, simulataneously, to 

the properties accumulated during graph traversal that apply to the volumes.  See the Actions section, 

below.

The requirement of minimizing the memory consumption has led us to foresee a system in which 

objects (as well as classes) in the detector description can be re-used.  This is called shared instancing, 

and is described below.  It essentially means that an element, compound, volume, or entire tree of 

volumes may be referenced by more than one object in the detector description.   Shared instancing can 

make the deletion of objects difficult unless special measures are taken.  We have used a technique 

called reference counting in order to facilitate clean-up and make it less error prone.  Using that 

technique, objects can be created using operator new.  The memory is then freed when some action is 

taken to clean up near the top of the tree.  See the section How Objects are Created and Destroyed. 

Before creating hierarchies of volumes representing positioned pieces of detectors, we need to create 

lower level primitives, such as elements, materials, and shapes.  So, we will discuss these first.
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7.4.3 Materials

Materials are represented within the geometry kernel class library by the class GeoMaterial, and are 

built up by combining different elements, specifying each element and its fraction-by-mass.  Material 

constants such as the radiation length and the interaction length, as well as constants for ionization 

energy loss, are available through the interface but do not need to be provided to the constructor.  

Instead, they are computed from the materialÕs element list.

The class GeoElement is used to represent elements.  Their constructor requires a name, symbol, and 

effective Z and A. These properties can also be retrieved from the element.

GeoMaterial objects are created by specifying a name and a density.  The material is ÒemptyÓ until 

elements are added, one by one, using the add() method, which is overloaded so that one may provide 

either elements or prebuilt materials.  After all materials are added, the lock() method must be called, 

which prevents further elements or materials from being added.

Material classes, as well as all other classes, use the CLHEP Units wherever applicable.  One should 

normally give units when specifying densities, lengths, volumes, or other quantities in the methods of 

all of the classes in this library.  Therefore, when specifying water, one should use a constructor call like 

this:

    GeoMaterial *water = new GeoMaterial(ÒH20Ó, 1.0*gram/cm3);

The CLHEP Units are described on the CLHEP web page . To finish constructing this material, water, 

one needs to follow the constructor with the following lines:

    GeoElement *hydrogen = new GeoElement(ÒHydrogenÓ,ÒHÓ,1.0, 1.010);

    GeoElement *oxygen   = new GeoElement(ÒOxygenÓ,  ÒOÓ, 8.0, 16.0);

    water->add(hydrogen,0.11);

    water->add(oxygen,0.89);

    water->lock();

The materials are then used to together with shapes to form logical volumes, discussed below. 

7.4.3.1  Shapes

Shapes are created using the new operator.  Essentially, shapes within this system are required to store 

and provide access to the geometrical constants that describe their geometrical form.  This data is, 

insofar as possible, to be specified on the constructor.

Shapes are extensible and we intend to service requests for extensions, by providing custom shapes to 

valued customers on request .

Listing 7.4 illustrates how one builds a box.

Listing 7.4  How  to build a box

    double        length=100*cm, width=200*cm, depth=33*cm;

    GeoBox *box = new GeoBox(length, width, depth);
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Most objects can be constructed along similar lines; exceptions are objects with multiple planes such as 

polycones and polygons; their interface allows one to add planes successively. For the polycone, for 

example, the shape is built as shown in Listing 7.5.

This creates a polycone whose projection subtends an angle of 10 degrees between 40 degrees and 50 

degrees, with planes at z=0, z=10, and z=15, with minimum and maximum radii there of (5,10), (6, 12), 

and (5,10).

The shapes can provide their data to a client through their accessors, and in addition support several 

other operations. Boolean operations on shapes are possible.  They can be accomplished through 

Boolean operators in class GeoShape:

    GeoShape       * donut  = new GeoTube();

    GeoShape       * hole   = new GeoTube();

    const GeoShape & result = (donut->subtract(*hole));

The result of a Boolean operation is a shape in a boolean expression tree that can, for example, be 

decoded when the geometry is declared to GEANT.

Another method that shapes can carry out is to compute their volume.  This is useful in the context of 

mass inventory, in which the mass of the detector model is computed, usually for the purpose of 

comparing with an actual installed detector.   One needs to call the .volume() method which is 

defined for all shape types. 

Finally, we mention a type identification scheme for shapes.  The scheme relies on two static and two 

virtual methods which together can be used as follows:

    // Test if the shape is a box:

    if (myShape->typeId()==GeoBox::classTypeId()) {

       .....

    }

The methods typeId() and classTypeId() return unsigned integers, making the type 

identification very  fast.  Alternately one can use the methods type() and classType(), which 

work in the same way, except that these methods return std::strings:  ÒBoxÓ, ÒT ubs,Ó ÒCons,Ó etc.

Listing 7.5  How  to build a polycone

    double dphi=10*degrees, sphi=40*degrees;

    GeoPcon  *polycone=new GeoPcon(dphi,sphi);

    double z0=0.0, rmin0=5, rmax0=10.0;

    polycone->addPlane(z0,rmin0,rmax0);

    double z1=10.0, rmin1=6, rmax1=12.0;

    polycone->addPlane(z1,rmin1,rmax1);

    double z2=15.0, rmin2=5, rmax2=10.0;

    polycone->addPlane(z1,rmin1,rmax1);
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7.4.3.2  Logical Volumes

Logical volumes represent, conceptually, a specific manufactured piece that can be placed in one or 

more locations around the detector.  A logical volume is created by specifying a name tag for the 

volume, a shape, and a material:

const GeoLogVol   *myLog  = new  GeoLogVol("MyLogVol",  

                                           myShape, 

                                           gNitrogen);       

7.4.3.3  Physical Volumes and the Geometry Graph

Having created elements, materials, shapes, and logical volumes, you are now ready to create and 

locate placed volumes called physical volumes. Before you start, you will need to know that there are 

two kinds of these:

¥ Regular Physical Volumes, designed to be small.

¥ Full Physical Volumes, designed to hold in cache complete information about how the volume 

is located with respect to the world volume, its formatted name string and other important 

information.

There is a common abstract base class for all of these:  GeoVPhysVol.  In addition both the full 

physical volumes have another layer of abstraction, GeoVFullPhysVol, in order to allow us to 

introduce parametrized volumes in the near future. All physical volumes allow access to their children.

The concrete subclasses that you have at your disposition for detector description are called 

GeoPhysVol and GeoFullPhysVol.  Both of these have a method to add either volumes or 

volume properties.  

    GeoPhysVol *myVol; 

    myVol->add(aTransformation);

    myVol->add(anotherVolume);

When you add a transformation, you change the position of the subsequent  volume with respect to the 

parent.  If you add no transformation, you will not shift the daughter relative to the parent and 

commonly will create a daughter which is centered directly in the parent.  If you add more than one 

transformation to the volume before adding a parent, they will be multiplied.  The last transformation to 

be added is applied first to the child.  Transformations are discussed next.  Like logical volumes, they 

may be shared. 

Like physical volumes, transformations come in two types:

¥ Regular transformations, designed to be small.

¥ Alignable transformations, which allow one to add a misalignment to the system.  Misaligning 

a transformation changes the position of all volumes ÒunderÓ the transformation and clears the 

absolute location caches of all full physical volumes.

When you create a transformation you must choose the type.  
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The model of the raw geometry is a tree of nodes, property nodes and volume nodes.  The tree can be 

thought of as as tree of volumes, each one ÒhavingÓ a set of properties (inherited from property nodes 

throughout the tree).  The subsystem engineer judiciously chooses which of the volumes are to contain 

full, cached, position information — usually, these first-class volumes are to be associated with a 

detector.  He or she also judiciously decides which of the transformations are to be alignableÑusually 

these are the transformations which position something that ultimately has a detector bolted, glued, 

riveted or otherwise clamped onto a sensitive piece.  Then, a GeoVDetectorFactory which builds the 

geometry keeps track of these pointers so that it may connect the important volumes to detector 

elements and that it may connect the alignable transformations to the alignment database for periodic 

updating.

Finally, we provide three mechanisms for giving names to volumes:

¥ Do nothing.  The volume will be called ÒANONÓ.

¥ Add a GeoNameTag object to the graph before adding a volume.  The next volume to be 

added will be given the GeoNameTagÕs name.

¥ Add a GeoSerialDenominator object to the graph before adding more volumes. The 

volumes will be named according to the base name of the GeoSerialDenominator, plus 

given a serial number 0, 1, 2, 3É..  

In effect this last method can be thought of as a way of parametrizing the name of the volume.

7.4.3.4  Actions

There are two ways of getting raw geometry information out of the model.  Suppose that one has access 

to a particular physical volume (it could be the ÒWorldÓ physical volume).

One can access its children, there names, and their transformations with respect to the parent in the 

following way:

    PVConstLink myVol;

    for (int c=0; c< myVol->getNChildVols();c++) {

        PVConstLink child = myVol->getChildVol(c);

        HepTransform3D  xf = myVol->getXToChildVol(c);

    }

One could then iterate in a similar way over the grand children, by using a double loop.  Ultimately one 

would probably to visit all the volumes, whatever their depth in the tree, so probably this would call on 

some form of recursion.  An easy way would be to embed the small sample of code shown above in a 

recursive subroutine or method.  That would be fine, and is conceptually simple.  However, within the 

geometry modelÕs kernel, we have provided an alternate, probably better way to visit the entire tree.

That mechanism involves a GeoVolumeAction.  A GeoVolumeAction is a way (for applications 

programmers) to obtain recursive behavior without writing any recursive routines.  ItÕs a class with a 

handler routine (handleVPhysVol) which is called for each node before (or after) it is called on its 

children.  This can descend to an arbitrary depth in the tree.  The GeoVolumeAction is an abstract 

base class and should be subclassed by programmers to suit their needs.  Another class 



page  89

Chapter 7  Detector Description Version/Issue: 8.0.0

TemplateVolAction is provided as a template that one can take and modify.  To run it, one does 

this:

    PVConstLink myVol;

    TemplateVolAction tva;

    myVol->apply(&tva);

The handleVPhysVol within the TemplateVolAction is where the work is supposed to get 

done.  It will be invoked repeatedly, once for each node in the tree.  Within that routine, one can access 

the physical volume as a subroutine parameter, and information about the transformation and the path 

to the node through the base class for actions, GeoVolumeAction.  The action can be designed to 

run from the bottom up or from the top down.

Incidentally, there is another kind of action in the library called GeoNodeAction.  

GeoNodeActions visit all nodes (including naming nodes, transformation nodes, and perhaps other 

property nodes that may be added later to the model)  Since usually an application programmer wants to 

see volumes and their properties, the GeoVolumeAction is more suited to casual users than the 

GeoNodeAction, which is considered mostly internal.  However the usage is similar, except that 

node actions are ÒexecÕdÓ while volume actions are ÒappliedÓ.  Here for example is how we can rewrite 

the loop over children using volume actions:

    PVConstLink myVol;

    for (int c=0; c< myVol->getNChildVols();c++) {

        GeoAccessVolumeAction av(c);

        myVol->exec(&ac);

        PVConstLink  child = ac.getVolume();

        HepTransform3D  xf = ac.getTransform();

    }

This, it turns out, will execute faster than the loop shown above, which (internally) will run the action, 

twice: once, in order to locate the daughter volume and then a second time, to locate its transform. 

7.4.3.5  How Objects are Created and Destroyed

We now come to the important topic of how objects in this system are created and destroyed.  The 

geometry kernel uses a technique called reference counting.  Reference counting, shortly stated, is a 

way to perform an automatic garbage collection of nodes that are no longer in use.  This is important 

when describing a large tree of information, much of which is ideally to be sharedÑused again and 

again in many places.

You may have noticed, in the section Ò Example 1: Getting the data into the transient represention.Ó that 

many of the objects have been created using operator new.  You may have also noticed, if youÕve tried 

to play around with the kernel classes, that statements which allocate most kernel classes on the stack, 

such as:

    GeoBox box(100, 100, 100); 

are not allowed.  Who is going to clean up the memory after all these new operations?  And why does 

the compiler disallow allocation on the stack?
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LetÕs look again at Example 1, especially at these lines shown in Listing 7.6.

Each of the three objects (worldBox, worldLog, and worldPhys) are created with a reference count.  

WorldBoxÕs is initially zero, at the time it is created.  WorldLogÕs is also zero when it is created.  

However, when worldVol is created, the reference count of worldBox increases to one, since now it is 

referenced somewhereÑnamely by the logcal volume worldLog.  We can diagram this sequence in the 

following way:

Now, when the physical volume worldPhys is created, the reference count of the logical volume will 

increase to oneÑsince it is used once by a single physical volume.

Each time a physical volume is positioned within another physical volume, its reference count 

increases.  Suppose we look now at a sub-tree of physical volumes that is used five times.  At a run 

boundary, it may happen that a piece of the tree is torn down.  When the first node referencing the 

physical volume is destroyed, it decreases the volumes reference count, from five to four.  When the 

next node referencing the physical volume  is destroyed, the reference count goes from four to three.  

And so forth.  

When the very last node referencing the physical volume is destroyed, this means that the physical 

volume itself has outlived its usefulness and should disappear.  And that is what happens.  The 

destruction of objects is carried out automatically when the reference count falls to zero.  And in fact, 

the only way to delete an object is to arrange for all of its references to disappear.  This is because the 

destructor of all reference counted objects is private.  

This scheme applies to elements, materials, shapes, logical volumes, physical volumes, full physical 

volumes, 

So far, we have described what happens to an object when it is no longer used by any other node in the 

tree.  However, what about the top of the tree, which has no nodes that refer to it?  Since the destructors 

of our physical volumes are private, how do you arrange to get it to go away?  

Reference counts can also be manipulated manually, by using the methods ref() and unref().  The 

physical volume at the head of the tree, often known as the ÒworldÓ physical volume, can be referenced 

manually using this call:

    worldPhys->ref();  //reference count goes from 0 to 1.

Later, you can destroy the world volume and trigger a global collection of garbage by using this call:  

    worldPhys->unref();//reference count goes from 1 to 0.

Listing 7.6  Object creation

    const GeoBox      *worldBox    = new GeoBox(1000,1000, 1000);   

    const GeoLogVol   *worldLog    = new GeoLogVol("WorldLog", 

                                     worldBox, gNitrogen);        

      GeoPhysVol        *worldPhys   = new GeoPhysVol(worldLog);                              
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When this happens the world physical volume deletes itself, decreasing the reference counts of it 

logical volumes and any children.  These will then begin dereferencing and possibly deleting their own 

children, until all the memory has been freed.

Suppose now, that you want to arrange for a node to not be deleted automatically in this fashionÑeven 

when nobody references it any more.  In order to do this, simply call the ref() method on this object.  

That way, the reference counts starts at 1 and will not fall to zero until you call unref(), manually.

7.4.4 Detector Specific Geometrical Services

Detector specific geometrical services are known to some as Òreadout geometryÓ.  This consists, first 

and foremost, of geometrical information that is not declared directly to the tracing engines, G3, for 

example, or G4.  Examples would include:  projective towers within a calorimeter, or implant regions 

within a piece of silicon.  Information such as the position of the boundaries of these regions is not 

required in the simulation of basic physics processes, though it certainly is required in the digitization, 

and possibly hit-making phase of simulation.   

Detector-specific geometrical services can and should include services that derive from the basic raw 

and readout geometry of the detector.  Such services could include point-of-closest-approach 

calculations, global-to-local coordinate transformations, calculations that compute the total number of 

radiation lengths within a cell, et cetera.  Additionally they could include nearest-neighbor calculations, 

hopefully in a highly detector specific way which is meaningful in the context of specific algorithms.

We have intended that this kind of service would be provided by the subsystem engineer, or somebody 

with an intimate knowledge of both the detector geometry and the requirements of hit simulation and/or 

reconstruction in the detector.  This kind of service, ideally, would be spread across at least two classes.  

The first place is in the detector element.  The detector element (subclass  of 

GeoVDetectorElement)  has a required association with a piece of material geometry, and has 

access to that piece.   The rest of the interfaceÑall of the geometrical services discussed above, such as 

the boundaries of implant layers, strip pitches, whatever, can be placed in the detector element.

The second place where detector specific geometrical  services may be placed is in the interface to the 

the detector manager (subclass of GeoVDetectorManager), which constructs and manages all raw 

and readout geometry.  This class should provide a fast mechanism for accessing the detector elements 

that it managesÑsuch as detector -specific, array-based random access. Other services, such as 

returning the maximum and minimum range of some array index (phi, eta, etc.) may also be 

appropriate.  

So in general the subsystems people have a lot of flexibility, but need to devise an interface to both the 

detector manager and the detector element that satisfies their needs.  The exact layout of these classes is 

hopefully the object of some design on the part of the engineer, can evolve with experience to involve a 

larger category of collaborating classes1.   The basic framework requires only that 1) detector factories 

1.  In certain CDF subdetectors, for example, all questions involving numerical limits to array boundaries were ultimately

handled separately by "numerology" classes, available through the detector node.
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create a physical volume tree, 2) they associate readout elements to certain physical volumes, and 3)   

additional readout information appear in the interface to the detector manager and the detector element.

7.4.5 Alignment

There are two alignment issues we need to address:  first, how does the GeoModel propagate alignment 

constants into the geometry description?  Second, how is the subsystem engineer supposed to connect 

the alignment constants to the database so that the geometry changes when the run conditions are 

updated?  The first issue concerns the way that GeoModel works, the second issue is mostly a policy 

question and outside the scope of GeoModel, per se.

GeoModel has a natural way of putting alignment constants into the geometry description and a natural 

way of getting them out.  To put them it, one alters one or more GeoAlignableTransform objects 

by changing its ÒDeltaÓ, or misalignment, which is a HepTransform3D.  The misalignment is then 

composed with the default transformation.  

To get the alignment out of GeoModel, simply query a physical volume for its transformation.  All 

physical volumes have the notion of relative and absolute transformations, both default and 

(mis)aligned.  Full physical volumes cache the absolute transformation, making it immediately 

available after the first request, while ordinary physical volumes compute it anew each time during tree 

traversal.  In either case, GeoModel methods supply an answer that correctly incorporates the effects of 

misalignment.

In case of cached transformations, itÕs worthwhile to describe the mechanism by which the cache is 

updated.  First, when an alignable transform is altered, all parent physical volumes receive a message to 

clear any caches.  These messages are passed onto their daughter volumes, and any physical volume in 

the geometry tree that contains a cache of absolute transformations is cleared.  Then, as soon as some 

client requests a transformation, it is recomputed recursively, starting from the first parent with valid 

cache information, and again cached.

A piece of readout geometry (class GeoVDetectorElement) cannot be constructed without a full 

physical volume.  One constructed, it always has access to that volumeÕs transformation.  Readout 

geometry should respond to all queries relevant to absolute spatial positioning by referencing the 

absolute transformation of the physical volume.  See section 2.9 for more details.  

Finally, how should the subsystem engineer arrange for the geometry to be updated when run 

conditions change?  The basic suggestion is to use the notification mechanisms of the calibration 

database.  In this scheme, engineer should arrange for the detector manager to receive a message when 

some relevant database table has changed.  The detector manager should then rescan the tables, 

construct new ÒDeltaÕ sÓ for each alignable transform under its jurisdiction, and alter those transforms.

When updates occur, readout elements may be required to update any local cache of information that 

derives, ultimately, from alignment constants.  This can be arranged using the same notification 

mechanism.

For the moment no documentation on the calibration database can be cited.   The need for this 

component is not considered urgent as of this writing.
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7.4.6 On Memory Use

Some effort has been spent insuring that the memory used by the a geometry description can be made 

small, and indeed, it is our belief that using the techniques made possible by this class library a 

remarkably compact description of the geometry can be achieved.  However a compact geometry will 

not occur automatically.  Users need to know what tricks are available, and need to apply them as 

aggressively as possible.  

If aggressive optimization of process size is done, across the board and from the beginning, we think 

that the GeoModel geometry description could contribute a negligible amount to the overall process 

size of a typical ATLAS executable.  

This goal is worth working towards, for three reasons.  First, if the process size is really negligible, then 

ATLAS executables can instantiate and use the whole geometry description, including even material 

geometry, at virtually no cost.

Second, it will mean that at GeoModel description could be kept alive even after the whole model has 

been declared to a simulation engine, such as GEANT3/4.

Third, experience shows that process size becomes unmanageable in large-scale projects unless the 

memory cost is carefully controlled from the beginning.

Here are some suggestions for how to minimize the size of the geometry description, in memory:

¥ Share instances of elements, materials, shapes, logical volumes and physical volumes, and 

even transformations.

¥ Use full physical volumes and alignable transforms only where necessary.

¥ Do not give names to physical volumes that represent uninteresting, nondescript pieces of 

material.

¥ In case you need to give names to physical volumes, use a serial denominator rather than 

multiple name tags.

¥ Parameterize volumes where possible.

The best way of sharing instances of elements and materials is to create them within a dedicated service 

and access that service, experiment-wide, for any materials that are required to construct the geometry.  

Logical volumes and shapes should be simple to share if adequate care is taken.  Shared instancing and 

parameterization of physical volumes is limited mostly by the constraints that:

¥ Physical volumes representing active elements must be ÒfullÓ and distinct, since they exist to 

cache an absolute position.  This means that they must not be shared, or parameterized, nor 

live in any branch of a physical volume tree which is shared or parameterized.

Finally, transformations could be shared by creating a bank of common transformations such as 

common f rotations and reusing them instead of instantiating, say, a θ rotation hundreds of times.  

When shared instancing of transformations works, however, parameterization will also usually work 

and is generally a better solution.  Note, parameterizing volumes in GeoModel does not mean that G4 

parameterization must be used during simulation.  We can and should make this optional.
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Not all of the planned optimization tools are available in this release.  Notably, parameterization of 

shapes (as opposed to transformations, only) has not been implemented, and a compressed 

representation for CLHEP transforms is not available.  We foresee adding both of these features to the 

library at a later date.  The first feature will give certain clients more powerful parameterization 

techniques, such as distortion fields which are needed ultimately by the liquid argon calorimeter 

software; while the second feature will allow a global reduction in memory cost in a way which is 

virtually transparent to the users.  
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Chapter 8  

Histogram facilities

8.1  Overview

The histogram data store is one of the data stores discussed in Chapter 2. Its purpose is to store statistics 

based data and user created objects that have a lifetime of more than a single event (e.g. histograms).

The usage of the original Abstract Interfaces for Data Analysis (AIDA) and Histogram Template 

Library (HTL) is deprecated as of release 12.0.0. Instead, the histogram service (THistSvc) now allows 

direct access to the underlying technology (ROOT). The service is described on the Atlas Wiki:

  https://uimon.cern.ch/twiki/bin/view/Atlas/AthenaFramework#ROOT_Histograms_and_NTuples_in_G

In brief: the user creates a ROOT histogram object on the heap, using new, then registers it with the 

THistSvc, a pointer to which can be obtained through the service locator in the normal way. After 

registration, the THistSvc will own the histograms, and it will take care of sharing, saving, and 

retrieving them. For full details, see the Wiki above.
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Chapter 9  

N-tuple and Event Collection facilities

9.1  Overview

The usage of the original Abstract Interfaces for Data Analysis (AIDA) and Histogram Template 

Library (HTL) is deprecated as of release 12.0.0. Instead, the histogram service (THistSvc) now allows 

direct access to the underlying technology (ROOT). The service is described on the Atlas Wiki:

  https://uimon.cern.ch/twiki/bin/view/Atlas/AthenaFramework#ROOT_Histograms_and_NTuples_in_G

In brief: the user creates a ROOT ntuple (any TTree or TTree derived) object on the heap, using new, 

then registers it with the THistSvc, a pointer to which can be obtained through the service locator in the 

normal way. After registration, the THistSvc will own the ntuples, and it will take care of sharing, 

saving, and retrieving them. For full details, see the Wiki above.
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Chapter 10  

Framework services

10.1  Overview

Services are generally sizeable components that are setup and initialized once at the beginning of 

the job by the framework and used by many algorithms as often as they are needed. It is not desirable in 

general to require more than one instance of each service. Services cannot have a ÒstateÓ because there 

are many potential users of them so it would not be possible to guarantee that the state is preserved in 

between calls.

In this chapter we describe how services are created and accessed, and then give an overview of the 

various services, other than the data access services, which are available for use within the Athena 

framework. The Job Options service, the Message service, the Particle Properties service, the Chrono 

& Stat service, the Auditor service, the Random Numbers service, the Incident service and the 

Introspection service are available in this release. The Tools service is described in <Tools Chapter>.

We also describe how to implement new services for use within the Athena environment. We look at 

how to code a service, what facilities the Service  base class provides and how a service is managed 

by the application manager.

10.2   Requesting and accessing services

The Application manager only creates by default the JobOptionsSvc and MessageSvc. Other 

services are created on demand the first time they are accessed, provided the corresponding DLL has 

been loaded. The services in the GaudiSvc package are accessible in this way by default - these are the 

default data store services (EventDataSvc, DetectorDataSvc, HistogramDataSvc, 

NTupleSvc) and many of the framework services described in this chapter and in <Tools Chapter> 
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(ToolSvc, ParticlePropertySvc, ChronoStatSvc, AuditorSvc, RndmGenSvc, 

IncidentSvc).

Additional services can be made accessible by loading the appropriate DLL, using the property 

ApplicationMgr.DLLs in the job options file, as shown for example in Listing 7.6 on page 12.

Sometimes it may be necessary to force the Application Manager to create a service at initialisation (for 

example if the order of creation is important). This can be done using the property 

ApplicationMgr.ExtSvc . In the example below this option is used to create a specific type of 

persistency service.:

Once created, services must be accessed via their interface. The Algorithm  base class provides a 

number of accessor methods for the standard framework services, listed on lines <line24> to <line35> 

of <Listing 5.1> on  <page??>. Other services can be located using the templated service function. 

In the example below we use this function to return the IParticlePropertySvc  interface of the 

Particle Properties Service: The third argument is optional: when set to true, the service will be 

created if it does not already exist; if it is missing, or set to false, the service will not be created if it 

is not found, and an error is returned.

In components other than Algorithms and Services (e.g. Tools, Converters), which do not provide the 

service function, you can locate a service using the serviceLocator function:

Listing 10.1  Job Option to create additional services

ApplicationMgr.ExtSvc += { "DbEventCnvSvc/RootEvtCnvSvc" };

Listing 10.2  Code to access the IParticlePropertySvc interface from an Algorithm

#include "GaudiKernel/IParticlePropertySvc.h"

...

IParticlePropertySvc* m_ppSvc;

StatusCode sc = service( "ParticlePropertySvc", m_ppSvc, true );

if ( sc.isFailure) {

...

#include "GaudiKernel/IParticlePropertySvc.h"

...

IParticlePropertySvc* m_ppSvc;

IService* theSvc;

StatusCode sc=serviceLocator()->getService("ParticlePropertySvc",theSvc,true);

if ( sc.isSuccess() ) {

  sc = theSvc->queryInterface(IID_IParticlePropertySvc, (void**)&m_ppSvc);

}

if ( sc.isFailure) {

...
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10.3  The Job Options Service

The Job Options Service is a mechanism which allows to configure an application at run time, without 

the need to recompile or relink. The options, or properties, are set via a job options file, which is read in 

when the Job Options Service is initialised by the Application Manager. In what follows we describe 

the format of the job options file, including some examples.

10.3.1 Algorithm, Tool and Service Properties

In general a concrete Algorithm, Service or Tool will have several data members which are used to 

control execution. These data members (properties) can be of a basic data type (int, float, etc.) or 

class (Property) encapsulating some common behaviour and higher level of functionality. Each 

concrete Algorithm, Service, Tool declares its properties to the framework using the 

declareProperty templated method as shown for example on line 12 of Listing 10.4 (see also 

<Section 5.2>). The method setProperties() is called by the framework in the initialization 

phase; this causes the job options service to make repeated calls to the setProperty() method of 

the Algorithm, Service or Tool (once for each property in the job options file), which actually assigns 

values to the data members.

10.3.1.1  SimpleProperties

Simple properties are a set of classes that act as properties directly in their associated Algorithm, Tool 

or Service, replacing the corresponding basic data type instance. The primary motivation for this is to 

allow optional bounds checking to be applied, and to ensure that the Algorithm, Tool or Service itself 

doesn’t violate those bounds. Available SimpleProperties are:

¥ int                 ==> IntegerProperty or SimpleProperty<int>

¥ double           ==> DoubleProperty  or SimpleProperty<double>

¥ bool               ==> BooleanProperty or SimpleProperty<bool>)

¥ std::string ==> StringProperty  or SimpleProperty<std::string>

and the equivalent vector classes

¥ std::vector<int> ==> IntegerArrayProperty or 

SimpleProperty<std::vector<int>>

¥ etc.

Associated with each property is a verifier which can be used to set optional upper and lower bounds 

and, and to enquire whether such bounds have been set and their values.
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The use of these classes is illustrated by the EventCounter class (Listings 10.3 and 10.4). 

In the Algorithm constructor, when calling declareProperty, you can optionally set the bounds 

using any of:

    verifier( ).setBounds( const T& lower, const T& upper );

    verifier( ).setLower ( const T& lower );

Listing 10.3  EventCounter.h

1: #include "GaudiKernel/Algorithm.h"

2: #include "GaudiKernel/Property.h"

3: class EventCounter : public Algorithm {

4: public:

5:     EventCounter( const std::string& name, ISvcLocator* pSvcLocator );

6:     ~EventCounter( );

7:     StatusCode initialize();

8:     StatusCode execute();

9:     StatusCode finalize();

10: private:

11:     IntegerProperty m_frequency;

12:     int m_skip;

13:     int m_total;

14: };

Listing 10.4  EventCounter.cpp

1: #include "GaudiAlg/EventCounter.h"

2: #include "GaudiKernel/MsgStream.h"

3: #include "GaudiKernel/AlgFactory.h"

4:

5: static const AlgFactory<EventCounter>    Factory;

6: const IAlgFactory& EventCounterFactory = Factory;

7:

8: EventCounter::EventCounter(const std::string& name, ISvcLocator*

9:                            pSvcLocator) :

10:                            Algorithm(name, pSvcLocator),

11:                            m_skip ( 0 ), m_total( 0 ) {

12:   declareProperty( "Frequency", m_frequency=1 );  // [1]

13:   m_frequency.verifier( ).setBounds( 0, 1000 );               // [2]

14: }

15:

16: StatusCode EventCounter::initialize() {

17:   MsgStream log(msgSvc(), name());

18:   log << MSG::INFO << "Frequency: " << m_frequency << endreq;    // [3]

19:   return StatusCode::SUCCESS;

20: }

Notes: 

1. A default value may be specified when the property is declared.

2. Optional upper and lower bounds may be set (see later).

3. The value of the property is accessible directly using the property itself.
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    verifier( ).setUpper ( const T& upper );

There are similar selectors and modifiers to determine whether a bound has been set etc., or to clear a 

bound.

    bool verifier( ).hasLower( )

    bool verifier( ).hasUpper( )

    T verifier( ).lower( )

    T verifier( ).upper( )

    void verifier( ).clearBounds( )

    void verifier( ).clearLower( )

    void verifier( ).clearUpper( )

You can set the property value using the "=" operator or the set functions 

    bool set( const T& value )

    bool setValue( const T& value )

The function value indicates whether the new value was within any bounds and was therefore 

successfully updated. In order to access the value of the property, use:

    m_property.value( );

In addition there’s a cast operator, so you can also use m_property directly instead of 

m_property.value().

10.3.1.2  CommandProperty

CommandProperty is a subclass of StringProperty that has a handler that is called whenever 

the value of the property is changed. Currently that can happen only during the job initialization so it is 

not terribly useful. Alternatively, an Algorithm could set the property of one of its sub-algorithms. 

However, it is envisaged that Athena will be extended with a scripting language such that properties can 

be modified during the course of execution.

The relevant portion of the interface to CommandProperty is:

  class CommandProperty : public StringProperty {

  public:

    [...]

    virtual void handler( const std::string& value ) = 0;

    [...]

  };

Thus subclasses should override the handler() member function, which will be called whenever the 

property value changes. A future development is expected to be a ParsableProperty (or something 

similar) that would offer support for parsing the string.
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10.3.2 Accessing and modifiying properties

Properties are private data which are initialised by the framework using the default values given when 

they are declared in constructors, or the values read from the job options file. On occasions it may be 

necessary for components to access (or even modify) the values of properties of other components. This 

can be done by using the getProperty() and setProperty() methods of the IProperty 

interface. In the example below,,an algorithm stores the default value of a cut of its sub-algorithm, then 

executes the sub-algorithm with a different cut, before resetting the cut back to its default value. Note 

that in the example we begin with a pointer to an Algorithm object, not an IAlgorithm interface. 

This means that we have access to the methods of both the IAlgorithm and IProperty interfaces 

and can therefore call the methods of the IProperty interface. In the general one may need to 

navigate to the IProperty interface first, as explaned in <Section 1.6>.

10.3.3 Job options file format

An example of a job options file was shown in  <Section 4.2> on <Page 29>. The job options file has a 

well-defined syntax (similar to a simplified C++-Syntax) without data types. The data types are 

recognised by the ÒJob Options CompilerÓ, which interprets the job options file according to the syntax 

(described in <Appendix C> together with possible compiler error codes).

The job options file is an ASCII-File, composed logically of a series of statements. The end of a 

statement is signalled by a semicolon Ò;Ò - as in C++.

Comments are the same as in C++, with Õ//Õ  until the end of the line, or between Õ/*Õ  and Õ*/Õ.

There are four constructs which can be used in a job options file:

¥ Assignment statement

¥ Append statement

¥ Include directive

¥ Platform dependent execution directive

Algorithm* myAlg;

...

std:string dfltCut;

StatusCode sc = myAlg->getProperty( "TheCut", dfltCut );

if ( sc.isSuccess() ) {

  msgAlg->setProperty( "TheCut", "0.8" );

  StatusCode sc1 = myAlg->execute();

  ...

}

if( scl.isSuccess() ) msgProp->setProperty( "The Cut", dfltCut );
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10.3.3.1  Assignment statement

An assignment statement assigns a certain value (or a vector of values) to a property of an object or 

identifier. An assignment statement has the following structure:

The first token (Object / Identifier ) specifies the name of the object whose property is to be 

set. This must be followed by a dot (Õ.Õ)

The next token (Propertyname ) is the name of the option to be set, as declared in the 

declareProperty() method of the IProperty interface. This must be followed by an assign 

symbol (Õ=Õ).

The final token (value ) is the value to be assigned to the property. It can be a vector of values, in 

which case the values are enclosed in array brackets (Õ{Ô,Õ}Ô), and separated by commas (,). The token 

must be terminated by a semicolon (Õ;Õ). 

The type of the value(s) must match that of the variable whose value is to be set, as declared in 

declareProperty(). The following types are recognised:

Boolean-type, written as true or false.

e.g. true;  false;

Integer-type, written as an integer value (containing one or more of the digits Õ0Õ, Õ1Õ, Õ2Õ, Õ3Õ, Õ4Õ, 

Õ5Õ, Õ6Õ, Õ7Õ, Õ8Õ, Õ9Õ)

e.g.: 123;  -923;  or in scientific notation, e.g.: 12e2;

Real-type (similar to double in C++), written as a real value (containing one or more of the 

digits Õ0Õ, Õ1Õ, Õ2Õ, Õ3Õ, Õ4Õ, Õ5Õ, Õ6Õ, Õ7Õ, Õ8Õ, Õ9Õ followed by a dot Õ.Õ and optionally one or more of digits 

again)

e.g.: 123.;  -123.45;  or in scientific notation, e.g. 12.5e7;

String type, written within a pair of double quotes (Ô Ó Õ)

e.g.: “I am a string”;  (Note: strings without double quotes are not allowed!)

Vector of the types above, within array-brackets (Õ{Õ, Õ}Õ), separated by a comma (Õ,Õ)

e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

A single element which should be stored in a vector must be within array-brackets without 

a comma

e.g. {true};
e.g. {“String”};

A vector which has already been defined earlier in the file (or in included files) can be 

reset to an empty vector

e.g. {};

<Object / Identifier> . < Propertyname > = < value >;
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10.3.3.2  Append Statement

Because of the possibility of including other job option files (see below), it is sometimes necessary to 

extend a vector of values already defined in the other job option file. This functionality is provided be 

the append statement.

An append statement has the following syntax:

The only difference from the assignment statement is that the append statement requires the Õ+=Õ  

symbol instead of the Ô=Õ  symbol to separate the Propertyname  and value  tokens.

The value must be an array of one or more values

e.g. {true};
e.g. {“String”};
e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

The job options compiler itself tests if the object or identifier already exists (i.e. has already been 

defined in an included file) and the type of the existing property. If the type is compatible and the object 

exists the compiler appends the value to the existing property. If the property does not exist then the 

append operation "+=" behaves as assignment operation Ò=Ó.

10.3.3.3  Including other Job Option Files

It is possible to include other job option files in order to use pre-defined options for certain objects. This 

is done using the #include  directive:

The Ò filename Ó can also contain the path where this file is located. By convention we use " .opts" 

as the file extension for job options. The include directive can be placed anywhere in the job option file, 

usually at the top (as in C++). Note that the value of a property defined earlier in the file may be 

over-ridden by assigning a new value to the same property: the last value assigned is the valid value! 

This makes it possible to over-ride the value of a property defined in a previously included file without 

changing the include file.

It is possible to use environment variables in the #include statement, either standalone or as part of a 

string. Both Unix style (Ò $environmentvariableÓ) and Windows style 

(Ò %environmentvariable%Ó) are understood (on both platforms!). For example, in line <2>:  of 

<Listing 4.2> the logical name $STDOPTS, which is defined in the GaudiExamples package, points 

to a directory containing a number of standard job options include files that can be used by applications.

<Object / Identifier> . < Propertyname > += < value >;

#include Òfilename.optsÓ
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As mentioned above, you can append values to vectors defined in an included job option file. The 

interpreter creates these vectors at the moment he interprets the included file, so you can only append 

elements defined in a file included before the append-statement!

As in C/C++, an included job option file can include other job option files. The compiler checks itself 

whether the include file has already been included, so there is no need for #ifndef  statements as in C 

or C++ to check for multiple inclusion.

10.3.3.4  Platform dependent execution

The possibility exists to execute statements only according to the used platform. Statements within 

platform dependent clauses are only executed if they are asserted to the current used platform.:

Only the variable WIN32 is defined! An #ifdef WIN32  will check if the used platform is a Windows 

platform. If so, it will execute the statements until an #endif  or an optional #else . On non-Windows 

platforms it will execute the code within #else  and #endif . Alternatively one directly can check for 

a non-Windows platform by using the #ifndef WIN32 clause.

10.3.3.5  Switching on/off printing

By default, the Job Options Service prints out the contents of the Job Options files to the standard 

output destination. The possibility exists to switch off this printing, and to toggle between the two 

states, as shown below:

In the example above, all lines between line 2 and line 5 will not be printed.

Table 1  

#ifdef WIN32

(Platform-Dependent Statement)

#else (optional)

(Platform-Dependent Statement)

#endif

1: // Switch off printing

2: #pragma print off

3: ..(some job options)

4: //Switch printing back on

5: #pragma print on
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10.4  The Standard Message Service

One of the components directly visible to an algorithm object is the message service. The purpose of 

this service is to provide facilities for the logging of information, warnings, errors etc. The advantage of 

introducing such a component, as opposed to using the standard std::cout and std::cerr  

streams available in C++ is that we have more control over what is printed and where it is printed. 

These considerations are particularly important in an online environment. 

The Message Service is configurable via the job options file to only output messages if their Òactivation 

levelÓ is equal to or above a given Òoutput levelÓ. The output level can be configured with a global 

default for the whole application:

and/or locally for a given client object (e.g. myAlgorithm):

Any object wishing to print some output should (must) use the message service. A pointer to the 

IMessageSvc  interface of the message service is available to an algorithm via the accessor method 

msgSvc() , see section <5.2>. It is of course possible to use this interface directly, but a utility class 

called MsgStream  is provided which should be used instead.

10.4.1 The MsgStream utility

The MsgStream class is responsible for constructing a Message  object which it then passes onto the 

message service. Where the message is ultimately sent to is decided by the message service.

In order to avoid formatting messages which will not be sent because the verboseness level is too high, 

a MsgStream  object first checks to see that a message will be printed before actually constructing it. 

However the threshold for a MsgStream  object is not dynamic, i.e. it is set at creation time and 

remains the same. Thus in order to keep synchronized with the message service, which in principle 

could change its printout level at any time, MsgStream  objects should be made locally on the stack 

when needed. For example, if you look at the listing of the HelloWorld  class (see also Listing 10.5 

below) you will note that MsgStream  objects are instantiated locally (i.e. not using new) in all three 

of the IAlgorithm  methods and thus are destructed when the methods return. If this is not done 

messages may be lost, or too many messages may be printed.

Table 2  

// Set output level threshold

//(1=VERBOSE, 2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL, 7=ALWAYS)

MessageSvc.OutputLevel = 4;

Table 3  

myAlgorithm.OutputLevel = 2;
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The MsgStream  class has been designed to resemble closely a normal stream class such as 

std::cout , and in fact internally uses an ostrstream object. All of the MsgStream  member 

functions write unformatted data; formatted output is handled by the insertion operators.

An example use of the MsgStream  class is shown below.

When using the MsgStream  class just think of it as a configurable output stream whose activation is 

actually controlled by the first word (message level) and which actually prints only when Ò endreqÓ is 

supplied. For all other functionality simply refer to the C++ ostream class.

The Òactivation levelÓ of the MsgStream  object is controlled by the first expression, e.g. 

MSG::ERROR or MSG::DEBUG in the example above. Possible values are given by the enumeration 

below: 

Thus the code in Listing 10.5 will produce NO output if the print level of the message service is set 

higher than MSG::ERROR. In addition if the serviceÕs print level is lower than or equal to 

MSG::DEBUG the Ò Finalize completed successfully Ó message will be printed (assuming 

of course it was successful).

10.4.1.1  User interface

What follows is a technical description of the part of the MsgStream  user interface most often seen by 

application developers. Please refer to the header file for the complete interface.

Insertion Operator  

The MsgStream class overloads the Õ<<Ô operator as described below.

Listing 10.5  Use of a MsgStream object.

1: #include ÒGaudiKernel/MgsStream.hÓ

2:

3: StatusCode myAlgo::finalize() {

4:   StatusCode status = Algorithm::finalise();

5:   MsgStream log(msgSvc(), name());

6:   if ( status.isFailure() ) { 

7:     // Print a two line message in case of failure.

8:     log << MSG::ERROR << Ò Finalize failedÓ << endl

9:         << ÒError initializing Base class.Ó << endreq;

10:   }

11:   else {

12:     log << MSG::DEBUG << ÒFinalize completed successfullyÓ << endreq;

13:   }

14:   return status;

15: }

enum MSG::Level { VERBOSE, DEBUG, INFO, WARNING, ERROR, FATAL, ALWAYS };
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MsgStream& operator <<(TYPE arg);

Insertion operator for various types. The argument is only formatted by the stream object 

if the print level is sufficiently high and the stream is active. Otherwise the insertion 

operators simply return. Through this mechanism extensive debug printout does not cause 

large run-time overheads. All common base types such as char , unsigned char , 

int , float , etc. are supported

MsgStream& operator <<(MSG::Level level);

This insertion operator does not format any output, but rather (de)activates the streamÕs 

formatting and forwarding engine depending on the value of level .

Accepted Stream Manipulators  

The MsgStream  specific manipulators are presented below, e.g. endreq : MsgStream& 
endreq(MsgStream& stream) . Besides these, the common ostream and ios manipulators such 

as std::ends , std::endl ,... are also accepted.

endl  Inserts a newline sequence. Opposite to the ostream behaviour this manipulator does not flush the 

buffer. Full name: MsgStream& endl(MsgStream& s)

ends  Inserts a null character to terminate a string. Full name: MsgStream& ends(MsgStream& 
s)

flush  Flushes the stream’s buffer but does not produce any output! Full name: MsgStream& 
flush(MsgStream& s)

endreq  Terminates the current message formatting and forwards the message to the message service. If 

no message service is assigned the output is sent to std::cout . Full name: MsgStream& 
endreq(MsgStream& s)

endmsg  Same as endreq

10.5  The Particle Properties Service

The Particle Property service is a utility to find information about a named particleÕs Geant3 ID, 

Jetset/Pythia ID, Geant3 tracking type, charge, mass or lifetime. The database used by the service can 

be changed, but by default is the same as that used by the LHCb SICB program. Note that the units 

conform to the CLHEP convention, in particular MeV for masses and ns for lifetimes. Any comment to 

the contrary in the code is just a leftover which has been overlooked!
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10.5.1 Initialising and Accessing the Service

This service is created by adding the following line in the Job Options file::

 Listing 10.2 on page 100 shows how to access this service from within an algorithm.

10.5.2 Service Properties

The Particle Property Service currently only has one property: ParticlePropertiesFile. This 

string property is the name of the database file that should be used by the service to build up its list of 

particle properties. The default value of this property, on all platforms, is 

$LHCBDBASE/cdf/particle.cdf1

10.5.3 Service Interface

The service implements the IParticlePropertySvc interface. In order to use it, clients must 

include the file GaudiKernel/IParticlePropertySvc.h.

The service itself consists of one STL vector to access all of the existing particle properties, and three 

STL maps, one to map particles by name, one to map particles by Geant3 ID and one to map particles 

by stdHep ID. 

Although there are three maps, there is only one copy of each particle property and thus each property 

must have a unique particle name and a unique Geant3 ID. Particles that are known to Geant but not to 

stdHep, such as Deuteron, have an artificial stdHep ID using unreserved (>7) digits. Although 

retrieving particles by name should be sufficient, the second and third maps are there because most 

often generated data stores a particleÕs Geant3 ID or stdHep ID, and not the particleÕs name. These 

maps speed up searches using the IDs.

Table 4  

// Create the particle properties service

ApplicationMgr.ExtSvc += { "ParticlePropertySvc" };

1.  This is an LHCb specific file. A generic implementation will be available in a future release of Gaudi
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The IParticlePropertySvc interface provides the following functions:

Listing 10.6  The IParticlePropertySvc interface.

// IParticlePropertySvc interface:

// Create a new particle property.

// Input: particle, String name of the particle.

// Input: geantId, Geant ID of the particle.

// Input: jetsetId, Jetset ID of the particle.

// Input: type, Particle type.

// Input: charge, Particle charge (/e).

// Input: mass, Particle mass (MeV).

// Input: tlife, Particle lifetime (ns).   

// Return: StatusCode - SUCCESS if the particle property was added.

virtual StatusCode push_back( const std::string& particle, int geantId, int 

jetsetId, int type, double charge, double mass, double tlife );

// Create a new particle property.

// Input: pp, a particle property class.

// Return: StatusCode - SUCCESS if the particle property was added.

virtual StatusCode push_back( ParticleProperty* pp );

  

// Get a const reference to the begining of the map.

virtual const_iterator begin() const;

  

// Get a const reference to the end of the map.

virtual const_iterator end() const;  

// Get the number of properties in the map.

virtual int size() const;

// Retrieve a property by geant id.

// Pointer is 0 if no property found.

virtual ParticleProperty* find( int geantId );

// Retrieve a property by particle name.

// Pointer is 0 if no property found.

virtual ParticleProperty* find( const std::string& name );

// Retrieve a property by StdHep id

// Pointer is 0 if no property found.

virtual ParticleProperty* findByStdHepID( int stdHepId );

// Erase a property by geant id.

virtual StatusCode erase( int geantId );

// Erase a property by particle name.

virtual StatusCode erase( const std::string& name );

// Erase a property by StdHep id

virtual StatusCode eraseByStdHepID( int stdHepId );
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The IParticlePropertySvc interface also provides some typedefs for easier coding:

10.5.4 Examples

Below are some extracts of code from the LHCb ParticleProperties example to show how one 

might use the service: 

10.6  The Chrono & Stat service

The Chrono & Stat service provides a facility to do time profiling of code (Chrono part) and to do some 

statistical monitoring of simple quantities (Stat part). The service is created by default by the 

Application Manager, with the name Ò ChronoStatSvcÓ and service ID extern const CLID& 

Listing 1  

typedef ParticleProperty* mapped_type;

typedef std::map< int, mapped_type, std::less<int> > MapID;

typedef std::map< std::string, mapped_type, std::less<std::string> > 

MapName;

typedef std::map< int, mapped_type, std::less<int> > MapStdHepID;

typedef IParticlePropertySvc::VectPP VectPP;

typedef IParticlePropertySvc::const_iterator const_iterator;

typedef IParticlePropertySvc::iterator iterator;

Listing 10.7  Code fragment to find particle properties by particle name.

 // Try finding particles by the different methods

  log << MSG::INFO << "Trying to find properties by Geant3 ID..." << endreq;

  ParticleProperty* pp1 = m_ppSvc->find( 1 );

  if ( pp1 ) log << MSG::INFO << *pp1 << endreq; 

  log << MSG::INFO << "Trying to find properties by name..." << endreq;

  ParticleProperty* pp2 = m_ppSvc->find( "e+" );

  if ( pp2 ) log << MSG::INFO << *pp2 << endreq; 

  log << MSG::INFO << "Trying to find properties by StdHep ID..." << endreq;

  ParticleProperty* pp3 = m_ppSvc->findByStdHepID( 521 );

  if ( pp3 ) log << MSG::INFO << *pp3 << endreq; 

Listing 10.8  Code fragment showing how to use the map iterators to access particle properties.

// List all properties 

log << MSG::DEBUG << "Listing all properties..." << endreq;

for( IParticlePropertySvc::const_iterator i = m_ppSvc->begin(); 

i != m_ppSvc->end(); i++ ) {

if ( *i ) log << *(*i) << endreq;

}
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IID_IChronoStatSvc To access the service from inside an algorithm, the member function 

chronoSvc() is provided. The job options to configure this service are described in <Appendix B>, 

<Table B-2>.

10.6.1 Code profiling

Profiling is performed by using the chronoStart() and chronoStop() methods inside the codes 

to be profiled, e.g:

The profiling information accumulates under the tag name given as argument to these methods. The 

service measures the time elapsed between subsequent calls of chronoStart() and 

chronoStop() with the same tag. The latter is important, since in the sequence of calls below, only 

the elapsed time between lines 3 and 5 lines and between lines 7 and 9 lines would be accumulated.:

The profiling information could be printed either directly using the chronoPrint() method of the 

service, or in the summary table of profiling information at the end of the job.

Note that this method of code profiling should be used only for fine grained monitoring inside 

algorithms. To profile a complete algorithm you should use the Auditor service, as described in section 

10.7.

Listing 2  

/// ...

IChronoStatSvc* svc = chronoSvc(); 

///  start 

svc->chronoStart( "Some Tag" ); 

/// here some user code are placed: 

... 

/// stop 

svc->chronoStop( "SomeTag" ); 

Listing 3  

1: svc->chronoStop("Tag");

2: svc->chronoStop("Tag");

3: svc->chronoStart("Tag");

4: svc->chronoStart("Tag");

5: svc->chronoStop("Tag");

6: svc->chronoStop("Tag");

7: svc->chronoStart("Tag");

8: svc->chronoStart("Tag");

9: svc->chronoStop("Tag"); 
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10.6.2 Statistical monitoring

Statistical monitoring is performed by using the stat() method inside user code:

The statistical information contains the "accumulated" flag, which is the sum of all Flags for the given 

tag, and the "accumulated" weight, which is the product of all Weights for the given tag. The 

information is printed in the final table of statistics. 

In some sense the profiling could be considered as statistical monitoring, where the variable Flag 

equals the elapsed time of the process.   

10.6.3 Chrono and Stat helper classes

To simplify the usage of the Chrono & Stat Service, two helper classes were developed: class 

Chrono and class Stat. Using these utilities, one hides the communications with Chrono & Stat 

Service and provides a more friendly environment.

10.6.3.1  Chrono

Chrono is a small helper class which invokes the chronoStart() method in the constructor and 

the chronoStop() method in the destructor. It must be used as an automatic local object. 

It performs the profiling of the code between its own creation and the end of the current scope, e.g:

If the Chrono & Stat Service is not accessible, the Chrono object does nothing 

Listing 4  

1: /// ... Flag and Weight to be accumulated:

2: svc->stat( " Number of Tracks " , Flag , Weight );

Listing 5  

1: #include GaudiKernel/Chrono.h

2: /// ... 

3: { // begin of the scope 

4:    Chrono chrono( chronoSvc() , "ChronoTag" ) ;

5:    /// some codes:

6:     ...

7:    ///

8: } // end of the scope

9: /// ...
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10.6.3.2  Stat

Stat is a small helper class, which invokes the stat() method in the constructor.

If the Chrono & Stat Service is not accessible, the Stat  object does nothing.

10.6.4 Performance considerations

The implementation of the Chrono & Stat Service uses two std::map containers and could generate 

a performance penalty for very frequent calls. Usually the penalty is small relative to the elapsed time 

of algorithms, but it is worth avoiding both the direct usage of the Chrono & Stat Service as well as the 

usage of it through the Chrono or Stat utilities inside internal loops:

10.7  The Auditor Service

The Auditor Service provides a set of auditors that can be used to provide monitoring of various 

characteristics of the execution of Algorithms. Each auditor is called immediately before and after each 

call to each Algorithm instance, and can track some resource usage of the Algorithm. Calls that are thus 

monitored are initialize(), execute() and finalize(), although monitoring can be 

disabled for any of these for particular Algorithm instances. Only the execute() function monitoring 

is enabled by default.

Listing 6  

1: GaudiKernel/Stat.h

2: /// ... 

3: Stat stat( chronoSvc() , "StatTag" , Flag , Weight ) ;

4: /// ...

Listing 7  

1: /// ...

2: {  /// begin of the scope 

3: Chrono chrono( chronoSvc() , "Good Chrono");  /// OK

4: long double a = 0 ; 

5: for(  long i = 0 ; i < 1000000 ; ++i ) 

6:  {

7:  Chrono chrono( svc , "Bad Chrono");   /// not OK

8:  /// some codes :

9:    a += sin( cos( sin( cos( (long double) i ) ) ) ); 

10:  ///  end of codes

11: Stat   stat  ( svc , "Bad Stat", a ); /// not OK 

12:  }  

13: Stat   stat  ( svc , "Good Stat", a); /// OK 

14: } ///  end of the scope!

15: /// ... 
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Several examples of auditors are provided. These are:

¥ NameAuditor. This just emits the name of the Algorithm to the Standard Message Service 

immediately before and after each call. It therefore acts as a diagnostic tool to trace program 

execution.

¥ ChronoAuditor. This monitors the cpu usage of each algorithm and reports both the total and 

per event average at the end of job.

¥ MemoryAuditor. This monitors the state of memory usage during execution of each 

Algorithm, and will warn when memory is allocated within a call without being released on 

exit. Unfortunately this will in fact be the general case for Algorithms that are creating new 

data and registering them with the various transient stores. Such Algorithms will therefore 

cause warning messages to be emitted. However, for Algorithms that are just reading data 

from the transient stores, these warnings will provide an indication of a possible memory leak. 

Note that currently the MemoryAuditor is only available for Linux.

¥ MemStatAuditor. The same as MemoryAuditor, but prints a table of memory usage statistics at 

the end.

10.7.1 Enabling the Auditor Service and specifying the enabled Auditors

The Auditor Service is enabled by the following line in the Job Options file:

Specifying which auditors are enabled is illustrated by the following example:

10.7.2 Overriding the default Algorithm monitoring

By default, only monitoring of the Algorithm execute() function is enabled by default. This default 

can be overridden for individual Algorithms by use of the following Algorithm properties:

Table 5  

// Enable the Auditor Service

ApplicationMgr.DLLs += { "GaudiAud" };

Table 6  

// Enable the NameAuditor and ChronoAuditor

AuditorSvc.Auditors = { "NameAuditor", "ChronoAuditor" };

Table 7  

// Enable initialize and finalize auditing & disable execute auditing

// for the myAlgorithm Algorithm

myAlgorithm.AuditInitialize = true;

myAlgorithm.AuditExecute    = false;

myAlgorithm.AuditFinalize   = true; 
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10.7.3 Implementing new Auditors

The relevant portion of the IAuditor abstract interface is shown below:

A new Auditor should inherit from the Auditor base class and override the appropriate functions from 

the IAuditor abstract interface. The following code fragment is taken from the ChronoAuditor:

10.8  The Random Numbers Service

When generating random numbers two issues must be considered:

¥ reproducibility and

¥ randomness of the generated numbers.

In order to ensure both, Athena implements a single service ensuring that these criteria are met. The 

encapsulation of the actual random generator into a service has several advantages:

Table 8  

virtual StatusCode beforeInitialize( IAlgorithm* theAlg ) = 0;

virtual StatusCode afterInitialize ( IAlgorithm* theAlg ) = 0;

virtual StatusCode beforeExecute   ( IAlgorithm* theAlg ) = 0;

virtual StatusCode afterExecute    ( IAlgorithm* theAlg ) = 0;

virtual StatusCode beforeFinalize  ( IAlgorithm* theAlg ) = 0;

virtual StatusCode afterFinalize   ( IAlgorithm* theAlg ) = 0;

Table 9  

#include "GaudiKernel/Auditor.h"

class ChronoAuditor : virtual public Auditor {

public:

    ChronoAuditor(const std::string& name, ISvcLocator* pSvcLocator);

    virtual ~ChronoAuditor();

    virtual StatusCode beforeInitialize(IAlgorithm* alg);

    virtual StatusCode afterInitialize(IAlgorithm* alg);

    virtual StatusCode beforeExecute(IAlgorithm* alg);

    virtual StatusCode afterExecute(IAlgorithm* alg);

    virtual StatusCode beforeFinalize(IAlgorithm* alg);

    virtual StatusCode afterFinalize(IAlgorithm* alg);

};
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¥ Random seeds are set by the framework. When debugging the detector simulation, the 

program could start at any event independent of the events simulated before. Unlike the 

random number generators that were known from CERNLIB, the state of modern generators 

is no longer defined by one or two numbers, but rather by a fairly large set of numbers. To 

ensure reproducibility the random number generator must be initialized for every event.

¥ The distribution of the random numbers generated is independent of the random number 

engine behind. Any distribution can be generated starting from a flat distribution.

¥ The actual number generator can easily be replaced if at some time in the future better 

generators become available, without affecting any user code.

The implementation of both generators and random number engines are taken from CLHEP. The 

default random number engine used by Athena is the RanLux engine of CLHEP with a luxury level of 

3, which is also the default for Geant4, so as to use the same mechanism to generate random numbers as 

the detector simulation. 

Figure 10.1 shows the general architecture of the Athena random number service. The client interacts 

with the service in the following way:

¥ The client requests a generator from the service, which is able to produce a generator 

according to a requested distribution. The client then retrieves the requested generator.

¥ Behind the scenes, the generator service creates the requested generator and initializes the 

object according to the parameters. The service also supplies the shared random number 

engine to the generator.

¥ After the client has finished using the generator, the object must be released in order to inhibit 

resource leaks

There are many different distributions available. The shape of the distribution must be supplied as a 

parameter when the generator is requested by the user.

Currently implemented distributions include the following. See also the header file 

GaudiKernel/RndmGenerators.h for a description of the parameters to be supplied.

¥ Generate random bit patterns with parameters Rndm::Bit()

¥ Generate a flat distribution with boundaries [min, max] with parameters: 

Rndm::Flat(double min, double max)

Figure 10.1 The architecture of the random number service. The client requests from the service a random 

number generator satisfying certain criteria

RndmGenSvc

RndmGen RndmEngine

Distribution:

Gauss

owns & initializes

usesowns
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¥ Generate a gaussian distribution with parameters: Rndm::Gauss(double mean, 

double sigma)

¥ Generate a poissonian distribution with parameters: Rndm::Poisson(double mean)

¥ Generate a binomial distribution according to n tests with a probability p with parameters: 

Rndm::Binomial(long n, double p)

¥ Generate an exponential distribution with parameters: Rndm::Exponential(double 

mean)

¥ Generate a Chi**2 distribution with n_dof degrees of freedom with parameters: 

Rndm::Chi2(long n_dof)

¥ Generate a Breit-Wigner distribution with parameters:

Rndm::BreitWigner(double mean, double gamma)

¥ Generate a Breit-Wigner distribution with a cut-off with parameters:

Rndm::BreitWignerCutOff (mean, gamma, cut-off) 

¥ Generate a Landau distribution with parameters:

Rndm::Landau(double mean, double sigma)

¥ Generate a user defined distribution. The probability density function is given by a set of 

descrete points passed as a vector of doubles:

Rndm::DefinedPdf(const std::vector<double>& pdf, long intpol)

Clearly the supplied list of possible parameters is not exhaustive, but probably represents most needs. 

The list only represents the present content of generators available in CLHEP and can be updated in 

case other distributions will be implemented.

Since there is a danger that the interfaces are not released, a wrapper is provided that automatically 

releases all resources once the object goes out of scope. This wrapper allows the use of the random 

number service in a simple way. Typically there are two different usages of this wrapper:

¥ Within the user code a series of numbers is required only once, i.e. not every event. In this 

case the object is used locally and resources are released immediately after use. This example 

is shown in Listing 10.9 .

Listing 10.9  Example of the use of the random number generator to fill a histogram with a Gaussian 

distribution within a standard Athena algorithm

1:  Rndm::Numbers gauss(randSvc(), Rndm::Gauss(0.5,0.2));

2:  if ( gauss )    {

3:    IHistogram1D* his = histoSvc()->book("/stat/2","Gaussian",40,0.,3.);

4:    for ( long i = 0; i < 5000; i++ )

5:      his->fill(gauss(), 1.0);

6:  }
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¥ One or several random numbers are required for the processing of every event. An example is 

shown in Listing 10.10.

There are a few points to be mentioned in order to ensure the reproducibility:

¥ Do not keep numbers across events. If you need a random number ask for it. Usually caching 

does more harm than good. If there is a performance penalty, it is better to find a more generic 

solution.

¥ Do not access the RndmEngine directly.

¥ Do not manipulate the engine. The random seeds should only be set by the framework on an 

event by event basis.

10.9  The Incident Service

The Incident service provides synchronization facilities to components in a Athena application. 

Incidents are named software events that are generated by software components and that are delivered 

to other components that have requested to be informed when that incident happens. The Athena 

components that want to use this service need to implement the IIncidentListener interface, 

Listing 10.10  Example of the use of the random number generator within a standard Athena algorithm, for 

use at every event. The wrapper to the generator is part of the Algorithm itself and must be initialized before 

being used. Afterwards the usage is identical to the example described in Listing 10.9

1: #include "GaudiKernel/RndmGenerators.h"

2:

3: // Constructor

4: class myAlgorithm : public Algorithm  {

5:   Rndm::Numbers m_gaussDist;

6: ...

7: };

8:

9: // Initialisation

10: StatusCode myAlgorithm::initialize() {

11: ...

1:   StatusCode sc=m_gaussDist.initialize(randSvc(), Rndm::Gauss(0.5,0.2));

2:   if ( !status.isSuccess() )  {

3:     // put error handling code here...

4:   }

5: ...

6: }
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which has only one method: handle(Incident&), and they need to add themselves as Listeners 

to the IncidentSvc. The following code fragment works inside Algorithms.

The third argument in method addListener() is for specifying the priority by which the component 

will be informed of the incident in case several components are listeners of the same named incident. 

This parameter is used by the IncidentSvc to sort the listeners in order of priority.

Table 10  

#include "GaudiKernel/IIncidentListener.h"

#include "GaudiKernel/IIncidentSvc.h"

class MyAlgorithm : public Algorithm, virtual public IIncidentListener {

  ...

};

MyAlgorithm::Initialize() {

  IIncidentSvc* incsvc;

  StatusCode sc = service("IncidentSvc", incsvc);

  int priority = 100;

  if( sc.isSuccess() ) {

     incsvc->addListener( this, "BeginEvent", priority);

     incsvc->addListener( this, "EndEvent");

  }

}

MyAlgorithm::handle(Incident& inc) {

  log << "Got informed of incident: " << inc.type()

      << " generated by: " << inc.source() << endreq;

}
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10.9.1 Known Incidents

10.10  The Gaudi Introspection Service

Introspection is the ability of a programming language to interact with objects from a meta-level. The 

Gaudi Introspection package defines a meta-model which gives the layout of this meta-information.

The data to fill this meta-information (i.e. the dictionary) can be generated by the Gaudi Object 

Description package (described in Section 7.7 on page 7) by adding a few lines to the CMT 

requirements file, as shown for example in Listing 10.11.

The C++-code generated in this way is compiled into a dll and loaded into the Gaudi Introspection 

Model at runtime.

To get a reference to information about a real object, clients have to use the Gaudi Introspection Service 

(IntrospectionSvc). The service can also be used to load the meta-information into the model. 

The Gaudi Introspection Service is already used in several places in the framework (e.g. Interface to 

Python, Data Store Browser).

Further information about this service is available at 

http://cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm.

Table 10.1  Table of known named incidents

Incident Type Source Description

BeginEvent ApplicationMgr The ApplicationMgr is starting processing of a new 

physics event. This incident can be use to clear caches 

of the previous event in Services and Tools.

EndEvent ApplicationMgr The ApplicationMgr has finished processing the phys-

ics event. The Event data store is not yet purged at this 

moment.

Listing 10.11  CMT requirements for generation of data dictionary of the LHCbEvent package

#---- dictionary

document obj2dict LHCbEventObj2Dict -group=dict ../xml/LHCbEvent.xml

library LHCbEventDict -group=dict ../dict/*.cpp

macro LHCbEventDict_shlibflags  "$(use_linkopts) $(libraryshr_linkopts)"

http://cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm
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10.11  Developing new services

10.11.1 The Service base class

Within Athena we use the term "Service" to refer to a class whose job is to provide a set of facilities or 

utilities to be used by other components. In fact we mean more than this because a concrete service 

must derive from the Service  base class and thus has a certain amount of predefined behaviour; for 

example it has initialize()  and finalize()  methods which are invoked by the application 

manager at well defined times.

Figure 10.1 shows the inheritance structure for an example service called SpecificService . The 

key idea is that a service should derive from the Service  base class and additionally implement one 

or more pure abstract classes (interfaces) such as IConcreteSvcType1  and 

IConcreteSvcType2  in the figure.

As discussed above, it is necessary to derive from the Service base class so that the concrete service 

may be made accessible to other Athena components. The actual facilities provided by the service are 

available via the interfaces that it provides. For example the ParticleProperties  service 

implements an interface which provides methods for retrieving, for example, the mass of a given 

particle. In figure 10.1 the service implements two interfaces each of two methods. 

Figure 10.1 Implementation of a concrete service class. Though not shown in the figure, both of the 

IConcreteSvcType interfaces are derived from IInterface.
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A component which wishes to make use of a service makes a request to the application manager. 

Services are requested by a combination of name, and interface type, i.e. an algorithm would request 

specifically either IConcreteSvcType1  or IConcreteSvcType2 .

The identification of what interface types are implemented by a particular class is done via the 

queryInterface  method of the IInterface  interface. This method must be implemented in the 

concrete service class. In addition the initialize()  and finalize()  methods should be 

implemented. After initialization the service should be in a state where it may be used by other 

components.

The service base class offers a number of facilities itself which may be used by derived concrete service 

classes:

¥ Properties are provided for services just as for algorithms. Thus concrete services may be fine 

tuned by setting options in the job options file.

¥ A serviceLocator  method is provided which allows a component to request the use of 

other services which it may need.

¥ A message service.

10.11.2 Implementation details

The following is essentially a checklist of the minimal code required for a service.

1. Define the interfaces

2. Derive the concrete service class from the Service  base class.

3. Implement the queryInterface()  method.

4. Implement the initialize()  method. Within this method you should make a call to 

Service::initialize()  as the first statement in the method and also make an explicit 

call to setProperties()  in order to read the serviceÕs properties from the job options 

(note that this is different from Algorithms, where the call to setProperties()  is done in 

the base class).

: 

Listing 10.12  An interface class

#include "GaudiKernel/IInterface.h"

class IConcreteSvcType1 : virtual public IInterface {

public:

  void method1() = 0;

  int method2() = 0;

}
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#include "IConcreteSvcType1.h"

const IID& IID_IConcreteSvcType1 = 143; // UNIQUE within LHCb !!

Listing 10.13  A minimal service implementation

#include "GaudiKernel/Service.h"

#include "IConcreteSvcType1.h"

#include "IConcreteSvcType2.h"

class SpecificService : public Service, 

                        virtual public IConcreteSvcType1,

                        virtual public IConcreteSvcType2 {

public:

  // Constructor of this form required:

  SpecificService(const std::string& name, ISvcLocator* sl);

  queryInterface(constIID& riid, void** ppvIF);

};

Listing 10.12  An interface class
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// Factory for instantiation of service objects

static SvcFactory<SpecificService> s_factory;

const ISvcFactory& SpecificServiceFactory = s_factory;

// UNIQUE Interface identifiers defined elsewhere

extern const IID& IID_IConcreteSvcType1;

extern const IID& IID_IConcreteSvcType2;

// queryInterface

StatusCode SpecificService::queryInterface(const IID& riid, void** ppvIF) {

  if(IID_IConcreteSvcType1 == riid) {

    *ppvIF = dynamic_cast<IConcreteSvcType1*> (this);

    return StatusCode::SUCCESS;

  } else if(IID_IConcreteSvcType2 == riid) {

    *ppvIF = dynamic_cast<IConcreteSvcType2*> (this);

    return StatusCode::SUCCESS;

  } else {

    return Service::queryInterface(riid, ppvIF);

  }

}

StatusCode SpecificService::initialize() { ... }

StatusCode SpecificService::finalize() { ... }

// Implement the specifics ...

SpecificService::method1() {...}

SpecificService::method2() {...}

SpecificService::method3() {...}

SpecificService::method4() {...}

Listing 10.13  A minimal service implementation
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Chapter 11  

Tools and ToolSvc

11.1  Overview

Tools are light weight objects whose purpose is to help other components perform their work. A 

framework service, the ToolSvc, is responsible for creating and managing Tools. An Algorithm 

requests the tools it needs to the ToolSvc , specifying if requesting a private instance by declaring 

itself as the parent. Since Tools are managed by the ToolSvc , any component1 can request a tool. 

Algorithms, Services and other Tools can declare themselves as Tools parents.

In this chapter we first describe these objects and the difference between ÒprivateÓ and ÒsharedÓ tools. 

We then look at the AlgTool base class and how to write concrete Tools.

In section 11.3 we describe the ToolSvc and show how a component can retrieve Tools via the 

service.

Finally we describe Associators, common utility GaudiTools for which we provide the interface and 

base class.

11.2  Tools and Services

As mentioned elsewhere Algorithms make use of framework services to perform their work. In general 

the same instance of a service is used by many algorithms and Services are setup and initialized once at 

the beginning of the job by the framework. Algorithms also delegate some of their work to 

sub-algorithms. Creation and execution of sub-algorithms are the responsibilities of the parent 

1.  In this chapter we will use an Algorithm as example component requesting tools.
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algorithm whereas the initialize()  and finalize()  methods are invoked automatically by the 

framework while initializing the parent algorithm. The properties of a sub-algorithm are automatically 

set by the framework but the parent algorithm can change them during execution. Sharing of data 

between nested algorithms is done via the Transient Event Store.

Both Services and Algorithms are created during the initialization stage of a job and live until the jobs 

ends.

Sometimes an encapsulated piece of code needs to be executed only for specific events, in which case it 

is desirable to create it only when necessary. On other occasions the same piece of code needs to be 

executed many times per event. Moreover it can be necessary to execute a sub-algorithm on specific 

contained objects that are selected by the parent algorithm or have the sub-algorithm produce new 

contained objects that may or may not be put in the Transient Store. Finally different algorithms may 

wish to configure the same piece of code slightly differently or share it as-is with other algorithms.

To provide this kind of functionality we have introduced a category of processing objects that 

encapsulate these ÒlightÓ algorithms. We have called this category Tools.

Some examples of possible tools are single track fitters, association to Monte Carlo truth information, 

vertexing between particles, smearing of Monte Carlo quantities.

11.2.1 ÒPrivateÓ and ÒSharedÓ Tools

Algorithms can share instances of Tools with other Algorithms if the configuration of 

the tool is suitable. In some cases however an Algorithm will need to customize a tool in a specific 

way in order to use it. This is possible by requesting the ToolSvc to provide a ÒprivateÓ  instance of a 

tool. 

If an Algorithm passes a pointer to itself when it asks the ToolSvc to provide it with a tool, it is 

declaring itself as the parent and a ÒprivateÓ  instance is supplied. Private instances can be configured 

according to the needs of each particular Algorithm.

As mentioned above many Algorithms can use a tool as-is, in which case only one instance of a 

Tool is created, configured and passed by the ToolSvc to the different algorithms. This is called a 

Òshar edÓ  instance. The parent of ÒsharedÓ tools is the ToolSvc.

11.2.2 The Tool classes

11.2.2.1  The AlgTool base class

The main responsibilities of the AlgTool base class (see Listing 11.1) are the identification of the 

tools instances, the initialisation of certain internal pointers when the tool is created and the 
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management of the tools properties. The AlgTool base class also offers some facilities to help in the 

implementation of derived tools and management of the additional tools interfaces..

Listing 11.1  The definition of the AlgTool Base class. Highlighted in bold are methods relevant for the 

implementation of concrete tools.

1: class AlgTool : public virtual IAlgTool,

2:                 public virtual IProperty {

3:

4: public:

5: // Standard Constructor.

6: AlgTool( const std::string& type, const std::string& name, 

         const IInterface* parent); 

7:

8: ISvcLocator* serviceLocator() const;

9: IMessageSvc* msgSvc() const;

10:

11: virtual StatusCode setProperty( const Property& p );

12: virtual StatusCode setProperty( std::istream& s );

13: virtual StatusCode setProperty( const std::string& n, 

                                const std::string& v );

14: virtual StatusCode getProperty(Property* p) const;

15: virtual const Property& getProperty( const std::string& name ) const;

16: virtual StatusCode getProperty( const std::string& n,std::string& v ) 

                  const;

17: virtual const std::vector<Property*>& getProperties( ) const;

18:

19: StatusCode setProperties();

20:

21: template <class T>

22:   StatusCode declareProperty(const std::string& name, T& property) const 

23:

24: virtual const std::string& name() const;

25: virtual const std::string& type() const;

26: virtual const IInterface*  parent() const;

27:

28: virtual StatusCode initialize();

29: virtual StatusCode finalize();

30:

31: virtual StatusCode queryInterface(const IID& riid, void** ppvUnknown);

32: void declInterface( const IID&, void*);

33: template <class I> class declareInterface {                      

  public:                                                      

    template <class T> declareInterface(T* tool)                        

}

34:

35: protected:

36:   // Standard destructor.

37:   virtual ~AlgTool();
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Constructor -  The base class has a single constructor which takes three arguments. The first is the type 

(i.e. the class) of the Tool object being instantiated, the second is the full name of the object and the 

third is a pointer to the IInterface of the parent component. The name is used for the identification 

of the tool instance as described below.The parent interface is used by the tool to access for example the 

outputLevel of the parent.

Access to Services -   A serviceLocator() method is provided to enable the derived tools to 

locate the services necessary to perform their jobs. Since concrete Tools are instantiated by the 

ToolSvc upon request, all Services created by the framework prior to the creation of a tool are 

available. In addition access to the message service is provided via the msgSvc() method. Both 

pointers are retrieved from the parent of the tool.

Properties -  A template method for declaring properties similarly to Algorithms is provided. This 

allows tuning of data members used by the Tools via JobOptions files. The ToolSvc takes care of 

calling the setProperties() method of the AlgTool base class after having instantiated a tool. 

Properties need to be declared in the constructor of a Tool. The property outputLevel is declared 

in the base class and is identically set to that of the parent component, unless specified otherwise in the 

JobOptions. For details on Properties see section 10.3.1.

IAlgTool Interface -  It consists of three accessor methods for the identification and managment of 

the tools: type() , name()  and parent() . These methods are all implemented by the base class 

and should not be overridden. Two additional methods, initialize() and finalize(), allow 

concrete tools to be configured after creation and orderly terminated before deletion. An empty 

implementation is provided by the AlgTool base class and concrete tools need to implement these 

methods only when relevant for their purpose. The ToolSvc is responsible for calling these methods 

at the appropriate time.

Tools Interfaces -  Concrete tools must implement additional interfaces that will inherit from 

IAlgTool. When a component implements more that one interface it is necessary to "recognize" 

the various interfaces. This is taken care of by the AlgTool base class once the additional 

interface is declared by a concrete tool (or tools’ base class). The declaration of the additional 

interface must be done in the constructor of a concrete tool and is done via the template method 

declareInterface.

11.2.2.2  Tools identification

A tool instance is identified by its full name. The name consist of the concatenation of the parent name, 

a dot, and a tool dependent part. The tool dependent part can be specified by the user, when not 

specified the tool type (i.e. the class) is automatically taken as the tool dependent part of the name. 

Examples of tool names are RecPrimaryVertex.VertexSmearer (a private tool) and 

ToolSvc.AddFourMom  (a shared tool). The full name of the tool has to be used in the jobOptions file to 

set its properties.

11.2.2.3  Concrete tools classes

Operational functionalities of tools must be provided in the derived tool classes. A concrete tool class 

must inherit directly or indirectly from the AlgTool  base class to ensure that it has the predefined 

behaviour needed for management by the ToolSvc.
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Concrete tools must implement additional interfaces, specific to the task a tool is designed to perform. 

Specialised tools intended to perform similar tasks can be derived from a common base class that will 

provide the common functionality and implement the common interface. Consider as example the 

vertexing of particles, where separate tools can implement different algorithms but the arguments 

passed are the same. The ToolSvc interacts with specialized tools only through the additional tools 

interface, therefore the interface itself must inherit from the IAlgTool interface in order for the tool 

to be correctly managed by the ToolSvc.

The inheritance structure of derived tools is shown in Figure 11.1. ConcreteTool1 implements one 

additional abstract interface while ConcreteTool2 and ConcreteTool3 derive from a base class 

SubTool that provides them with additional common functionality.

11.2.2.4  Implementation of concrete tools

An example minimal implementation of a concrete tool is shown in Listings 11.2,  11.3 and 11.4, taken 

from the LHCb ToolsAnalysis example application  .. 

Figure 11.1 Tools class hierarchy

Listing 11.2  Example of a concrete tool additional interface

1: static const InterfaceID IID_IVertexSmearer("IVertexSmearer", 1 , 0); 

2:

3: class IVertexSmearer : virtual public IAlgTool {

4: public:

5:   /// Retrieve interface ID

6:   static const InterfaceID& interfaceID() { return IID_IVertexSmearer; }

7:   // Actual operator function 

8:   virtual StatusCode smear( MyAxVertex* ) = 0;

9: };
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The creation of concrete tools is similar to that of Algorithms, making use of a Factory Method. As for 

Algorithms, Tool factories enable their creator to instantiate new tools without having to include any of 

the concrete tools header files. A template factory is provided and a tool developer will only need to add 

the concrete factory in the implementation file as shown in lines 1 to 4 of Listing 11.4

In addition a concrete tool class must specify a single constructor with the same parameter signatures as 

the constructor of the AlgTool base class as shown in line 5 of Listing 11.3.

Below is the minimal checklist of the code necessary when developing a Tool:

Listing 11.3  Example of a concrete tool minimal implementation header file

1: #include "GaudiKernel/AlgTool.h"

2: class VertexSmearer : public AlgTool, virtual public IVertexSmearer {

3: public:

4:   // Constructor

5:   VertexSmearer( const std::string& type, const std::string& name, 

               const IInterface* parent);

6:   // Standard Destructor

7:   virtual ~VertexSmearer() { }

8:   // specific method of this tool

9:   StatusCode smear( MyAxVertex* pvertex );

Listing 11.4  Example of a concrete tool minimal implementation file

1: #include "GaudiKernel/ToolFactory.h"

2: // Static factory for instantiation of algtool objects

3: static ToolFactory<VertexSmearer> s_factory;

4: const IToolFactory& VertexSmearerFactory = s_factory;

5:

6: // Standard Constructor

7: VertexSmearer::VertexSmearer(const std::string& type, 

                             const std::string& name, 

                             const IInterface* parent) 

                       : AlgTool( type, name, parent ) {

8:

9:   // Locate service needed by the specific tool

10:   m_randSvc = 0;

11:   if( serviceLocator() ) {

12:     StatusCode sc=StatusCode::FAILURE;

13:     sc = serviceLocator()->service( "RndmGenSvc", m_randSvc, true );

14:   }

15:   // Declare additional interface

16:   declareInterface<IVertexSmearer>(this);

17:   

18:   // Declare properties of the specific tool

19:   declareProperty("dxVtx", m_dxVtx = 9 * micrometer);

20:   declareProperty("dyVtx", m_dyVtx = 9 * micrometer);

21:   declareProperty("dzVtx", m_dzVtx = 38 * micrometer);

22: }

23: // Implement the specific method ....

24: StatusCode VertexSmearer::smear( MyAxVertex* pvertex ) {...} 
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1. Define the specific interface (inheriting from the IAlgTool interface).

2. Derive the tool class from the AlgTool base class

3. Provide the constructor

4. Declare the additional interface in the constructor.

5. Implement the factory adding the lines of code shown in Listing 11.4

6. Implement the specific interface methods.

In addition if a tool requires special initialization and termination you can implement the initialize and 

finalize methods.

11.3  The ToolSvc

The ToolSvc manages Tools. It is its responsibility to create tools, configure them, make them 

available to Algorithms or Services and terminate them in an orderly fashion before deleting 

them.

The ToolSvc verifies if a tool type is available and creates the necessary instance after having verified 

if it doesnÕt already exist. If a tool instance exists the ToolSvc will not create a new identical one but 

pass to the algorithm the existing instance. Tools are created on a Òfirst requestÓ basis: the first 

Algorithm requesting a tool will prompt its creation. The relationship between an algorithm, the 

ToolSvc and Tools is shown in Figure 11.1.

Immediately after having created a tool, the ToolSvc will configure it by setting its properties and 

calling the tool initialize() method.

The ToolSvc will ÒholdÓ a tool until it is no longer used by any component or until the finalize() 

method of the tool service is called. Algorithms can inform the ToolSvc they are not going to use a 

Figure 11.1 ToolSvc design diagram

IToolSvc

IService

ToolSvc
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tool previously requested via the releaseTool method of the IToolSvc interface.  Before deleting 

the tools the ToolSvc will cleanly terminate them by calling their finalize() method.

The ToolSvc is created by default by the ApplicationMgr and algorithms wishing to use the 

service can do so via the algorithm toolSvc() accessor method. Services and AlgTools need to 

retrieve it using the serviceLocator() method of their respective base classes.

11.3.1 Retrieval of tools via the IToolSvc interface

The IToolSvc interface is the ToolSvc specific interface providing methods to retrieve tools. 

The interface has two retrieve methods that differ in their parameters signature, as shown in Listing 

11.5

The arguments of the method shown in Listing 11.5, line 1, are the tool type (i.e. the class), the tool 

additional interface ID and the IAlgTool interface of the returned tool. In addition there are two 

arguments with default values: one is the IInterface of the component requesting the tool, the other 

a boolean creation flag. If the component requesting a tool passes a pointer to itself as the third 

argument, it declares to the ToolSvc that it is asking for a ÒprivateÓ instance of the tool. By default a 

ÒsharedÓ instance is provided. In general if the requested instance of a Tool does not exist the ToolSvc 

will create it. This behaviour can be changed by setting to false the last argument of the method.

The method shown in Listing 11.5, line 2 differs from the one shown in line 1 by an extra argument, a 

string specifying the tool dependent part of the full tool name. This enables a component to request two 

separately configurable instances of the same tool.

Listing 11.5  The IToolSvc interface methods

1: virtual StatusCode retrieve(const std::string& type, 

                            const IID&, 

                            IAlgTool*& tool, 

                            const IInterface* parent=0, 

                            bool createIf=true ) = 0;   

2: virtual StatusCode retrieve(const std::string& type, 

                            const IID&, 

                            const std::string& name, 

                            IAlgTool*& tool, 

                            const IInterface* parent=0, 

                            bool createIf=true ) = 0;
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When retriving concrete tools, it is recommended to use the two templated functions provided in the 

IToolSvc interface file which are shown in Listing 11.6. 

The two template methods correspond to the IToolSvc retrieve methods but have the tool returned as 

a template parameter. Using these methods the component retrieving a tool avoids explicit 

dynamic-casting to specific additional interfaces or to derived classes.

Listing 11.7 shows an example of retrieval of a shared and of a common tool.

11.4  GaudiTools

In general concrete tools are specific to applications or detectorsÕ code but there are some tools of 

common utility for which interfaces and base classes can be provided. The Associators described below 

and contained in the GaudiTools package are one of such tools.

Listing 11.6  The IToolSvc template methods

1: template <class T>  

2:   StatusCode retrieveTool( const std::string& type, 

                             T*& tool, 

                             const IInterface* parent=0, 

                             bool createIf=true ) {...}

3: template <class T>  

4:   StatusCode retrieveTool( const std::string& type, 

                             const std::string& name, 

                             T*& tool, 

                             const IInterface* parent=0, 

                             bool createIf=true ) {...}

Listing 11.7  Example of retrieval by an algortihm of a shared tool in line 4: and of a private tool in line 10:

1: // Example of tool belonging to the ToolSvc and shared between

2: // algorithms

3: StatusCode sc;

4: sc = toolsvc()->retrieveTool("AddFourMom", m_sum4p );

5: if( sc.isFailure() ) {

6:   log << MSG::FATAL << "    Unable to create AddFourMom tool" << endreq;

7:   return sc;

8: }

9: // Example of private tool

10: sc = toolsvc()->retrieveTool("ImpactPar", m_ip, this );

11: if( sc.isFailure() ) {

12:   log << MSG::FATAL << "    Unable to create ImpactPar tool" << endreq;

13:   return sc;

14: }
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11.4.1 Associators

When working with Monte Carlo data it is often necessary to compare the results of reconstruction or 

physics analysis with the original corresponding Monte Carlo quantities on an event-by-event basis as 

well as on a statistical level.

Various approaches are possible to implement navigation from reconstructed simulated data back to the 

Monte Carlo truth information. Each of the approaches has its advantages and could be more suited for 

a given type of event data or data-sets. In addition the reconstruction and physics analysis code should 

treat simulated data in an identical way to real data.

In order to shield the code from the details of the navigation procedure, and to provide a uniform 

interface to the user code, a set of Gaudi Tools, called Associators, has been introduced. The user can 

navigate between any two arbitrary classes in the Event Model using the same interface as long as a 

corresponding associator has been implemented. Since an Associator retrieves existing navigational 

information, its actual implementation depends on the Event Model and how the navigational 

information is stored. For some specific Associators, in addition, it can depend on some algorithmic 

choices: consider as an example a physics analysis particle and a possible originating Monte Carlo 

particle where the associating discriminant could be the fractional number of hits used in the 

reconstruction of the tracks. An advantage of this approach is that the implementation of the navigation 

can be modified without affecting the reconstruction and analysis algorithms because it would affect 

only the associators. In addition short-cuts or complete navigational information can be provided to the 

user in a transparent way. By limiting the use of such associators to dedicated monitoring algorithms 

where the comparison between raw/reconstructed data and MC truth is done, one could ensure that the 

reconstruction and analysis code treat simulated and real data in an identical way.

Associators must implement a common interface called IAssociator. An Associator base class 

providing at the same time common functionality and some facilities to help in the implementation of 

concrete Associators is provided. A prototype version of these classes is provided in the current release 

of Athena.

11.4.1.1  The IAssociator Interface

As already mentioned Associators must implement the IAssociator interface.

In order for Associators to be retrieved from the ToolSvc only via the IAssociator interface, the 

interface itself inherits from the IAlgTool interface. While the implementation of the IAlgTool 

interface is done in the AlgTool base class, the implementation of the IAssociator interface is the 

full responsibility of concrete associators.
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The four methods of the IAssociator interface that a concrete Associator must implement are show 

in Listing 11.8 

Two i_retrieveDirect methods must be implemented for retrieving associated classes following 

the same direction as the links in the data: for example from reconstructed particles to Monte Carlo 

particles. The first parameter is a pointer to the object for which the associated Monte Carlo 

quantity(ies) is requested. The second parameter, the discriminating signature between the two 

methods, is one or a vector of pointers to the associated Monte Carlo objects of the type requested. 

Some reconstructed quantities will have only one possible Monte Carlo associated object of a certain 

type, some will have many, others will have many out of which a ÒbestÓ associated object can be 

extracted. If one of the two methods is not valid for a concrete associator, such method must return a 

failure. The third and fourth parameters are the class IDs of the objects for which the association is 

requested. This allows to verify at run time if the objectsÕ types are those the concrete associator has 

been implemented for.

The two i_retrieveInverse methods are complementary and are for retrieving the association 

between the same two classes but in the opposite direction to that of the links in the data: for example 

from Monte Carlo particles to reconstructed particles. The different name is intended to alert the user 

that navigation in this direction may be a costly operation

Four corresponding template methods are implemented in IAssociator to facilitate the use of 

Associators by Algorithms (see Listing 11.9). Using these methods the component retrieving a tool 

Listing 11.8  Methods of the IAssociator Interface that must be implemented by concrete associators

1: virtual StatusCode i_retrieveDirect( ContaineData Objectect* objFrom, 

                            ContaineData Objectect*& objTo, 

                            const CLID idFrom, 

                            const CLID idTo ) = 0;

2: virtual StatusCode i_retrieveDirect( ContaineData Objectect* objFrom, 

                               std::vector<ContaineData Objectect*>& 

vObjTo,                             const CLID idFrom, 

                            const CLID idTo ) = 0;

3: virtual StatusCode i_retrieveInverse( ContaineData Objectect* objFrom, 

                            ContaineData Objectect*& objTo, 

                            const CLID idFrom, 

                            const CLID idTo) = 0;

4: virtual StatusCode i_retrieveInverse( ContaineData Objectect* objFrom,  

                            std::vector<ContaineData Objectect*>& 

vObjTo,                             const CLID idFrom, 

                            const CLID idTo) = 0;
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avoids some explicit dynamic-casting as well as the setting of class IDs. An example of how to use such 

methods is described in section 11.4.1.3.

11.4.1.2  The Associator base class

An associator is a type of AlgTool,so the Associator base class inherits from the AlgTool base 

class. Thus, Associators can be created and managed as AlgTools by the ToolSvc. Since all the 

methods of the AlgTool base class (as described in section 11.2.2.1) are available in the 

Associator base class, only the additional functionality is described here.

Access to Event Data Service -  An eventSvc() method is provided to access the Event Data 

Service since most concrete associators will need to access data, in particular if accessing navigational 

short-cuts.

Associator Properties -  Two properties are declared in the constructor and can be set in the 

jobOptions: Ò FollowLinksÓ and Ò DataLocationÓ. They are respectively a bool with initial 

value true and a std::string with initial value set to Ò Ó. The first is foreseen to be used by an 

associator when it is possible to either follow links between classes or retrieve navigational short cuts 

from the data. A user can choose to set either behaviour at run time. The second property contains the 

location in the data where the stored navigational information is located. Currently it must be set via the 

jobOptions when necessary, as shown in Listing 11.10 for a particular implementation provided in the 

Associator example. Two corresponding methods are provided for using the information from these 

properties: followLinks() and whichTable().

Inverse Association -  Retrieving information in the direction opposite to that of the links in the data is 

in general a time consuming operation, that implies checking all the direct associations to access the 

inverse relation for a specified object. For this reason Associators should keep a local copy of the 

inverse associations after receiving the first request for an event. A few methods are provided to 

facilitate the work of Associators in this case. The methods inverseExist() and 

setInverseFlag(bool) help in keeping track of the status of the locally kept inverse 

information.The method buildInverse() has to be overridden by concrete associators since they 

choose in which form to keep the information and should be called by the associator when receiving the 

first request during the processing of an event.

Listing 11.9  Template methods of the IAssociator interface

1: template <class T1, class T2>                                   

  StatusCode retrieveDirect( T1* from, T2*& to ) {...}

2: template <class T1>                                            

  StatusCode retrieveDirect( T1* from, 

                             std::vector<ContaineData 

Objectect*>& objVTo,                              const CLID idTo ) 

{...}

3: template <class T1, class T2>                                         

  StatusCode retrieveInverse( T1* from, T2*& to ) {...}

4: template <class T1>                                            

  StatusCode retrieveInverse( T1* from, 

                             std::vector<ContaineData 

Objectect*>& objVTo,                              const CLID idTo ) 

{...}
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Locally kept information -  When a new event is processed, the associator needs to reset its status to 

the same conditions as those after having been created . In order to be notified of such an incident 

happening the Associator base class implements the IListener interface and, in the constructor, 

registers itself with the Incident Service (see section 10.9 for details of the Incident Service). The 

associatorÕs flushCache() method is called in the implementation of the IListener interface in 

the Associator base class. This method must be overridden by concrete associators wanting to do a 

meaningful reset of their initial status.

11.4.1.3  A concrete example

In this section we look at an example implementation of a specific associator. The code is taken from 

the LHCb Associator example, but the points illustrated should be clear even without a knowledge 

of the LHCb data model.

The AxPart2MCParticleAsct provides association between physics analysis particles 

(AxPartCandidate) and the corresponding Monte Carlo particles (MCParticle). The direct 

navigational information is stored in the persistent data as short-cuts, and is retrieved in the form of a 

SmartRefTable in the Transient Event Store. This choice is specific to 

AxPart2MCParticleAsct, any associator can use internally a different navigational mechanism. 

The location in the Event Store where the navigational information can be found is set in the job options 

via the Ò DataLocationÓ property , as shown in Listing 11.10.

In the current LHCb data model only a single MCParticle can be associated to one 

AxPartCandidate and vice-versa only one or no AxPartCandidate can be associated to one 

MCParticle. For this reason only the i_retrieveDirect and i_retrieveInverse 

methods providing one-to-one association are meaningful. Both methods verify that the objects passed 

are of the correct type before attempting to retrieve the information, as shown in Listing 11.11. When 

no association is found, a StatusCode::FAILURE is returned.

The i_retrieveInverse method providing the one-to-many association returns a failure, while a 

fake implementation of the one-to-many i_retrieveDirect method is implemented in the 

example, to show how an Algorithm can use such a method. In the AxPart2MCParticleAsct 

Listing 11.10  Example of setting properties for an associator via jobOptions

ToolSvc.AxPart2MCParticleAsct.DataLocation = 

"/Event/Anal/AxPart2MCParticle";

Listing 11.11  Checking if objects to be associated are of the correct type

1: if ( idFrom != AxPartCandidate::classID() ){

2:   objTo = 0;

3:   return StatusCode::FAILURE;

4: }

5: if ( idTo != MCParticle::classID() ) {

6:   objTo = 0;

7:   return StatusCode::FAILURE;

8: }
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example the inverse table is kept locally and both the buildInverse() and flushCache() 

methods are overridden. In the example the choice has been made to implement an additional method 

buildDirect() to retrieve the direct navigational information on a first request per event basis.

Listing 11.12 shows how a monitoring Algorithm can get an associator from the ToolSvc and use it to 

retrieve associated objects through the template interfaces.

Listing 11.12  Extracted code from the AsctExampleAlgorithm

1: #include "GaudiTools/IAssociator.h" 

                                      

2: // Example of retrieving an associator

3: IAssociator 

4: StatusCode sc = toolsvc()->retrieveTool("AxPart2MCParticleAsct", 

                                        m_pAsct);

5: if( sc.isFailure() ) {

6:   log << MSG::FATAL << "Unable to create Associator tool" << endreq;

7:   return sc;

8: }                                                                         

9: // Example of retrieving inverse one-to-one information from an

10: // associator

11: SmartDataPtr<MCParticleVector> vmcparts (evt,"/MC/MCParticles");

12: for( MCParticleVector::iterator itm = vmcparts->begin(); 

     vmcparts->end() != itm; itm++) {

13:      AxPartCandidate* mptry = 0;

14:      StatusCode sc = m_pAsct->retrieveInverse( *itm, mptry );

15:      if( sc.isSuccess() ) {...}

16:      else {...}

17: }                                                                         

18: // Example of retrieving direct one-to-many information from an

19: // associator

20: SmartDataPtr<AxPartCandidateVector> candidates(evt,              

                                    "/Anal/AxPartCandidates");

21: std::vector<ContaineData Objectect*> pptry;

22: AxPartCandidate* itP = *(candidates->begin());

23: StatusCode sa = 

  m_pAsct->retrieveDirect(itP, pptry, MCParticle::classID());

24: if( sa.isFailure() ) {...}

25: else {

26:   for (std::vector<ContaineData Objectect*>::iterator it = 

pptry.begin();        pptry.end() != it; it++ ) {

27:        MCParticle* imc = dynamic_cast<MCParticle*>( *it );

28:   }

29: }
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Chapter 12  

Converters 

12.1  Overview

Consider a small piece of detector; a silicon wafer for example. This ÒobjectÓ will appear in many 

contexts: it may be drawn in an event display, it may be traversed by particles in a Geant4 simulation, 

its position and orientation may be stored in a database, the layout of its strips may be queried in an 

analysis program, etc. All of these uses or views of the silicon wafer will require code.

One of the key issues in the design of the framework was how to encompass the need for these different 

views within Athena. In this chapter we outline the design adopted for the framework and look at how 

the conversion process works. This is followed by sections which deal with the technicalities of writing 

converters for reading from and writing to ROOT files.

12.2  Persistency converters

Athena gives the possibility to read event data from, and to write data back to, ROOT files. The use of 

ODBC compliant databases is also possible, though this is not yet part of the Athena release. Other 

persistency technologies have been implemented for LHCb, in particular the reading of data from 

LHCb DSTs based on ZEBRA.

Figure 12.1 is a schematic illustrating how converters fit into the transient-persistent translation of 

event data. We will not discuss in detail how the transient data store (e.g. the event data service) or the 
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persistency service work, but simply look at the flow of data in order to understand how converters are 

used. An introduction to the persistency mechanism of Gaudi can be found in reference [13].

One of the issues considered when designing the Gaudi framework was the capability for users to 

Òcreate their own data types and save objects of those types along with references to already existing 

objectsÓ. A related issue was the possibility of having links between objects which reside in different 

stores (i.e. files and databases) and even between objects in different types of store.

Figure 12.1 shows that data may be read from an ODBC database and/or ROOT files into the transient 

event data store and that data may be written out again to the same media. It is the job of the persistency 

service to orchestrate this transfer of data between memory and disk.

The figure shows two ÒslaveÓ services: the ODBC conversion service and the ROOT  I/O service. These 

services are responsible for managing the conversion of objects between their transient and persistent 

representations. Each one has a number of converter objects which are actually responsible for the 

conversion itself. As illustrated by the figure a particular converter object converts between the 

transient representation and one other form, here either MS Access or ROOT. 

12.3  Collaborators in the conversion process

In general the conversion process occurs between the transient representation of an object and some 

other representation. In this chapter we will be using persistent forms, but it should be borne in mind 

that this could be any other ÒtransientÓ form such as those required for visualisation or those which 

serve as input into other packages (e.g. Geant4). 

Figure 12.1 Persistency conversion services in Gaudi
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Figure 12.1 shows the interfaces (classes whose name begins with "I") which must be implemented in 

order for the conversion process to function. 

The conversion process is essentially a collaboration between the following types:

¥ IConversionSvc

¥ IConverter

¥ IOpaqueAddress

For each persistent technology, or Ònon-transientÓ representation, a specific conversion service is 

required. This is illustrated in the figure by the class AConversionSvc  which implements the 

IConversionSvc  interface.

A given conversion service will have at its disposal a set of converters. These converters are both type 

and technology specific. In other words a converter knows how to convert a single transient type (e.g. 

MuonHit) into a single persistent type (e.g. RootMuonHit) and vice versa. Specific converters 

implement the IConverter  interface, possibly by extending an existing converter base class.

Figure 12.1 The classes (and interfaces) collaborating in the conversion process.
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A third collaborator in this process are the opaque address objects. A concrete opaque address class 

must implement the IOpaqueAddress  interface. This interface allows the address to be passed 

around between the transient data service, the persistency service, and the conversion services without 

any of them being able to actually decode the address. Opaque address objects are also technology 

specific. The internals of an OdbcAddress object are different from those of a RootAddress 

object.

Only the converters themselves know how to decode an opaque address. In other words only converters 

are permitted to invoke those methods of an opaque address object which do not form a part of the 

IOpaqueAddress  interface.

Converter objects must be ÒregisteredÓ with the conversion service in order to be usable. For the 

ÒstandardÓ converters this will be done automatically . For user defined converters (for user defined 

types) this registration must be done at initialisation time (see Section 7.10).

12.4  The conversion process

As an example (see Figure 12.1) we consider a request from the event data service to the persistency 

service for an object to be loaded from a data file.

As we saw previously, the persistency service has one conversion service slave for each persistent 

technology in use. The persistency service receives the request in the form of an opaque address object. 

The svcType()  method of the IOpaqueAddress  interface is invoked to decide which conversion 

service the request should be passed onto. This returns a Òtechnology identifierÓ which allows the 

persistency service to choose a conversion service.

The request to load an object (or objects) is then passed onto a specific conversion service. This service 

then invokes another method of the IOpaqueAddress  interface, clID() , in order to decide which 

converter will actually perform the conversion. The opaque address is then passed onto the concrete 

converter who knows how to decode it and create the appropriate transient object.

The converter is specific to a specific type, thus it may immediately create an object of that type with 

the new operator. The converter must now ÒunpackÓ the opaque address, i.e. make use of accessor 

methods specific to the address type in order to get the necessary information from the persistent store.

For example, a ZEBRA converter might get the name of a bank from the address and use that to locate 

the required information in the ZEBRA common block. On the other hand a ROOT converter may 

extract a file name, the names of a ROOT TTree  and an index from the address and use these to load 

an object from a ROOT file. The converter would then use the accessor methods of this ÒpersistentÓ 

object in order to extract the information necessary to build the transient object.

We can see that the detailed steps performed within a converter depend very much on the nature of the 

non-transient data and (to a lesser extent) on the type of the object being built.
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If all transient objects were independent, i.e. if there were no references between objects then the job 

would be finished. However in general objects in the transient store do contain references to other 

objects.

These references can be of two kinds: 

Figure 12.1 A trace of the creation of a new transient object.
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i. ÒMacroscopicÓ references appear as separate ÒleavesÓ in the data store. They have to be 

registered with a separate opaque address structure in the data directory of the object being 

converted. This must be done after the object was registered in the data store in the method 

fillObjRefs(). 

ii. Internal references must be handled differently. There are two possibilities for resolving 

internal references:

1. Load on demand. If the object the reference points to should only be loaded when 

accessed, the pointer must no longer be a raw C++ pointer, but rather a smart pointer 

object containing itself the information for later resolution of the reference. This is 

the preferred solution for references to objects within the same data store (e.g. 

references from Monte-Carlo tracks to Monte-Carlo vertices) and is generated by the 

Object Description Tools when a relation tag is found in the XML class description 

(see Section 7.9).

2. Filling of raw C++ pointers. This is only necessary if the object points to an object in 

another store, e.g. the detector data store, and should be avoided in classes foreseen 

to be made persistent. To resolve the reference a converter has to retrieve the other 

object and set the raw pointer. These references should be set in the 

fillObjRefs()  method. This of course is more complicated, because it must be 

ensured that both objects are present at the time the reference is accessed (i.e. when 

the pointer is actually used).
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12.5  Converter implementation - general considerations

After covering the ground work in the preceding sections, let us look exactly what needs to be 

implemented in a specific converter class. The starting point is the Converter  base class from which 

a user converter should be derived.

The converter shown in Listing 12.1 is responsible for the conversion of UDO type objects into objects 

that may be stored into an Objectivity database and vice-versa. The UDOCnv constructor calls the 

Converter base class constructor with arguments which contain this information. These are the values 

CLID_UDO, defined in the UDO class, and Objectivity_StorageType  which is also defined 

elsewhere. The first two extern  statements simply state that these two identifiers are defined 

elsewhere.

All of the Òbook-keepingÓ can now be done by the Converter  base class. It only remains to fill in the 

guts of the converter. If objects of type UDO have no links to other objects, then it suffices to implement 

the methods createRep()  for conversion from the transient form (to Objectivity in this case) and 

createObj()  for the conversion to the transient form.

If the object contains links to other objects then it is also necessary to implement the methods 

fillRepRefs()  and fillObjRefs() .

12.6  Storing Data using the ROOT I/O Engine

One possibility for storing data is to use the ROOT I/O engine to write ROOT files. Although ROOT by 

itself is not an object oriented database, with modest effort a structure can be built on top to allow the 

Listing 12.1  An example converter class

// Converter for class UDO.

extern const CLID& CLID_UDO;

extern unsigned char OBJY_StorageType;

static CnvFactory<UDOCnv> s_factory;

const ICnvFactory& UDOCnvFactory = s_factory;

class UDOCnv : public Converter {

public:

  UDOCnv(ISvcLocator* svcLoc) : 

      Converter(Objectivity_StorageType, CLID_UDO, svcLoc) { }

  createRep(DataObject* pO, IOpaqueAddress*& a);  // transient->persistent

  createObj(IOpaqueAddress* pa, DataObject*& pO); // persistent->transient

  fillObjRefs( ... ); // transient->persistent

  fillRepRefs( ... ); // persistent->transient

}
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Converters to emulate this behaviour. In particular, the issue of object linking had to be solved in order 

to resolve pointers in the transient world.

The concept of ROOT supporting paged tuples called trees and branches is adequate for storing bulk 

event data. Trees split into one or several branches containing individual leaves with data. 

The data structure within the Gaudi data store is also tree like. In the transient world Gaudi objects are 

sub-class instances of the ÒDataObjectÓ. The DataObject offers some basic functionality like the 

implicit data directory which allows e.g. to browse a data store. This tree structure will be mapped to a 

flat structure in the ROOT file resulting in a separate tree representing each leaf of the data store. Each 

data tree contains a single branch containing objects of the same type. The Gaudi tree is split up into 

individual ROOT trees in order to give easy access to individual items represented in the transient 

model without the need of loading complete events from the root file i.e. to allow for selective data 

retrieval. The feature of ROOT supporting selective data reading using split trees did not seem too 

attractive since, generally, complete nodes in the transient store should be made available in one go.

However, ROOT expects ÒROOTÓ objects, they must inherit from TObject. Therefore the objects 

from the transient store have to be converted to objects understandable by ROOT.

The following sections are an introduction to the machinery provided by the Gaudi framework to 

achieve the migration of transient objects to persistent objects. The ROOT specific aspects are not 

discussed here; the ROOT I/O engine is documetned on the ROOT web site http://root.cern.ch). Note 

that Gaudi only uses the I/O engine, not all ROOT classes are available. Within Gaudi the ROOT I/O 

engine is implemented in the GaudiRootDb package.

12.7  The Conversion from Transient Objects to ROOT Objects

As for any conversion of data from one representation to another within the Gaudi framework, 

conversion to/from ROOT objects is based on Converters. The support of a ÒgenericÓ Converter 

accesses pre-defined entry points in each object. The transient object converts itself to an abstract byte 

stream. However, for specialized objects specific converters must be built.

Whenever objects must change their representation within Gaudi, data converters are involved. For the 

ROOT case, the converters must have some knowledge of ROOT internals and of the service finally 

used to migrate ROOT objects (->TObject) to a file. They must be able to translate the functionality 

of the DataObject component to/from the ROOT storage. Within ROOT itself the object is stored as 

a Binary Large Object (BLOB).

The generic data conversion mechanism relies on two functionalities, which must be present:

¥ When writing or reading objects, the objectÕs data must be "serializable". The corresponding 

persistent type is of a generic type, the data are stored as a machine independent byte stream. 

This method is implemented automatically if the class is described using the Gaudi Object 

Description tools (described in Section 7.7 on page 7). When reading objects, an empty object 

must be created before any de-serialization can take place. The constructor must be called. 

This functionality does not imply any knowledge of the conversion mechanism itself and 

http://root.cern.ch
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hence can be encapsulated into an object factory simply returning a DataObject. These data 

object factories are distinguished within Gaudi through the persistent data type information, 

the class ID. For this reason the class ID of objects, which are written must only depend on the 

object type, i.e. every class needs it’s own class ID. The instantiation of the appropriate factory 

is done by a macro. Please see the RootIO example for details how to instantiate the factory.

12.8  Storing Data using other I/O Engines

Once objects are stored as BLOBs, it is possible to adopt any storage technology supporting this 

datatype. This is the case not only for ROOT, but also for

¥ Objectivity/DB

¥ most relational databases, which support an ODBC interface like 

¥ Microsoft Access,

¥ Microsoft SQL Server, 

¥ MySQL, 

¥ ORACLE and others.

Note that although storing objects using these technologies is possible, there is currently no 

implementation available in the Gaudi release. If you desperately want to use Objectivity or one of the 

ODBC databases, please contact Markus Frank (Markus.Frank@cern.ch).

mailto:Markus.Frank@cern.ch
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Chapter 13  

Visualization

13.1  Overview

This Chapter is in preparation.
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Chapter 14  

Framework packages, interfaces and 

libraries

14.1  Overview

It is clearly important to decompose large software systems into hierarchies of smaller and more 

manageable entities. This decomposition can have important consequences for implementation related 

issues, such as compile-time and link dependencies, configuration management, etc. A package is the 

grouping of related components into a cohesive physical entity. A package is also the minimal unit of 

software release.

In this chapter we describe the Athena package structure, and how these packages are implemented in 

libraries. We also discuss abstract inerfaces, which are one of the main design features of Athena

14.2  Athena Package Structure

14.2.1 Packaging Guidelines

Packaging is an important architectural issue for the Gaudi framework, but also for the experiment 

specific software packages based on Gaudi. Typically, experiment packages consist of:

¥ Specific event model

¥ Specific detector description

¥ Sets of algorithms (digitisation, reconstruction, etc.)
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The packaging should be such as to minimise the dependencies between packages, and must absolutely 

avoid cyclic dependencies. The granularity should not be too small or too big. Care should be taken to 

identify the external interfaces of packages: if the same interfaces are shared by many packages, they 

should be promoted to a more basic package that the others would then depend on. It is a good idea to 

discuss your packaging with the librarian and/or architect. 

14.3  Interfaces in Gaudi

One of the main design choices at the architecture level in Gaudi was to favour abstract interfaces when 

building collaborations of various classes. This is the way we best decouple the client of a class from its 

real implementation.

An abstract interface in C++ is a class where all the methods are pure virtual. We have defined some 

practical guidelines for defining interfaces. An example is shown in Listing 14.1:

Listing 14.1  Example of an abstract interface (IService)

1: // $Header:  $

2: #ifndef GAUDIKERNEL_ISERVICE_H

3: #define GAUDIKERNEL_ISERVICE_H

4:

5: // Include files

6: #include "GaudiKernel/IInterface.h"

7: #include <string>

8:

9: // Declaration of the interface ID. (id, major, minor) 

10: static const InterfaceID IID_IService(2, 1, 0); 

11:

12: /** @class IService IService.h GaudiKernel/IService.h

13:

14:     General service interface definition

15:

16:     @author Pere Mato

17: */

18: class IService : virtual public IInterface  {

19: public:

20:   /// Retrieve name of the service

21:   virtual const std::string&  name() const = 0;

22:   /// Retrieve ID of the Service. Not really used.

23:   virtual const IID&          type() const = 0;

24:   /// Initilize Service 

25:   virtual StatusCode initialize() = 0;

26:   /// Finalize Service

27:   virtual StatusCode finalize() = 0;

28:   /// Retrieve interface ID

29:   static const InterfaceID& interfaceID() { return IID_IService; }

30: };

31:

32: #endif  // GAUDIKERNEL_ISERVICE_H
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From this example we can make the following observations:

¥ Interface Naming. The name of the class has to start with capital ÒIÓ to denote that it is an 

interface.

¥ Derived from IInterface. We follow the convention that all interfaces should be derived from a 

basic interface IInterface. This interface defined 3 methods: addRef(), release() 

and queryInterface(). This methods allow the framework to manage the reference 

counting of the framework components and the possibility to obtain a different interface of a 

component using any interface (see Section 14.3.2).

¥ Pure Abstract Methods. All the methods should be pure abstract (virtual ReturnType 

method(...) = 0;) With the exception of the static method interfaceID() (see 

later) and some inline templated methods to facilitate the use of the interface by the end-user.

¥ Interface ID. Each interface should have a unique identification (see Section 14.3.1) used by 

the query interface mechanism.

14.3.1 Interface ID

We needed to introduce an interface ID for identifying interfaces for the queryInterface functionality. 

The interface ID is made of a numerical identifier (generated from the interface name by a hash 

function) and major and minor version numbers. The version number is used to decide if the interface 

the service provider is returning is compatible with the interface the client is expecting. The rules for 

deciding if the interface request is compatible are:

¥ The interface identifier is the same

¥ The major version is the same

¥ The minor version of the client is less than or equal to the one of the service provider. This 

allows the service provider to add functionality (incrementing minor version number) keeping 

old clients still compatible. 

The interface ID is defined in the same header file as the rest of the interface. Care should be taken of 

globally allocating the interface identifier (by giving a unique name to the constructor), and of 

modifying the version whenever a change of the interface is required, according to the rules. Of course 

changes to interfaces should be minimized.

The static method Ixxx::interfaceID() is useful for the implementation of templated methods 

and classes using an interface as template parameter. The construct T::interfaceID() returns the 

interface ID of interface T.

static const InterfaceID IID_Ixxx("Ixxx" /*id*/, 1 /*major*/, 0 /*minor*/); 

class Ixxx : public IInterface {

  . . .

  static const InterfaceID& interfaceID() { return IID_Ixxx; }

};
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14.3.2 Query Interface

The method queryInterface() is used to request a reference to an interface implemented by a 

component within the Gaudi framework. This method is implemented by each component class of the 

framework and allows us to navigate from one interface of a component to another, as shown for 

example in Listing 14.2, where we navigate from the IMessageSvc interface of the message service 

to its IProperty interface, in order to discover the value of its "OutputLevel" property.

The implementation of queryInterface() is usually not very visible since it is done in the base 

class from which you inherit. A typical implementation is shown in Listing 14.3:

The implementation returns the corresponding interface pointer if there is a match between the received 

InterfaceID and the implemented one. The method versionMatch() takes into account the 

rules mentioned in Section 14.3.1.

If the requested interface is not recognized at this level (line 9), the call can be forwarded to the 

inherited base class or possible sub-components of this component.

Listing 14.2  Example usage of queryInterface to navigate between interfaces

1: IMessageSvc* msgSvc();

2: ...

3: IProperty* msgProp;

4: msgSvc()->queryInterface( IID_IProperty, (void**)&msgProp );

5: std::string dfltLevel;

6: StatusCode scl = msgProp->getProperty( "OutputLevel", dfltLevel );

Listing 14.3  Example implementation of queryInterface()

1: StatusCode DataSvc::queryInterface(const InterfaceID& riid, 

2:                                    void** ppvInterface) {

3:   if ( IID_IDataProviderSvc.versionMatch(riid) )  {

4:     *ppvInterface = (IDataProviderSvc*)this;

5:   }

6:   else if ( IID_IDataManagerSvc.versionMatch(riid) )   {

7:     *ppvInterface = (IDataManagerSvc*)this;

8:   }

9:   else  {

10:     return Service::queryInterface(riid, ppvInterface);

11:   }

12:   addRef();

13:   return SUCCESS;

14: }
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14.4  Libraries in Athena

Three different sorts of library can be identified that are relevant to the framework. These are 

component libraries,  linker (or installed) libraries and dual-use libraries. These libraries are used for 

different purposes and are built in different ways.

14.4.1 Component libraries

Component libraries are shared libraries that contain standard framework components which 

implement abstract interfaces. Such components are Algorithms, Auditors, Services, Tools or 

Converters. These libraries do not export their symbols apart from one which is used by the framework 

to discover what components are contained by the library. Thus component libraries should not be 

linked against; they are used purely at run-time, being loaded dynamically upon request, the 

configuration being specified by the job options file. Changes in the implementation of a component 

library do not require the application to be relinked.

Component libraries contain factories for their components, and it is important that the factory entries 

are declared and loaded correctly. The following sections describe how this is done.

When a component library is loaded, the framework attempts to locate a single entrypoint, called 

getFactoryEntries(). This is expected to declare and load the component factories from the 

library. Several macros are available to simplify the declaration and loading of the components via this 

function.

Consider a simple package MyComponents, that declares and defines the MyAlgorithm class, 

being a subclass of Algorithm, and the MyService class, being a subclass of Service. Thus the 

package will contain the header and implementation files for these classes (MyAlgorithm.h, 

MyAlgorithm.cpp, MyService.h and MyService.cpp) in addition to whatever other files 

are necessary for the correct functioning of these components. 

In order to satisfy the requirements of a component library, two additional files must also be present in 

the package. One is used to declare the components, the other to load them. Because of the technical 

limitations inherent in the use of shared libraries, it is important that these two files remain separate, 

and that no attempt is made to combine their contents into a single file. 

The names of these files and their contents are described in the following sections.
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14.4.1.1  Declaring Components

Components within the component library are declared in a file MyComponents_entries.cpp. 

By convention, the name of this file is the package name concatenated with _entries. The contents 

of this file are shown below:

14.4.1.2  Component declaration statements

The complete set of statements that are available for declaring components is given below. They 

include those that support C++ classes in different namespaces, as well as for DataObjects or 

ContaineData Objectects using the generic converters. 

Listing 14.4  The MyComponents_entries.cpp file

#include "GaudiKernel/DeclareFactoryEntries.h"

DECLARE_FACTORY_ENTRIES( MyComponents ) {       [1]            

    DECLARE_ALGORITHM( MyAlgorithm );           [2]

    DECLARE_SERVICE  ( MyService );

}

Notes:

1. The argument to the DECLARE_FACTORY_ENTRIES statement is the name of the 

component library.

2. Each component within the library should be declared using one of the DECLARE_XXX 

statements discussed in detail in the next Section.

Listing 14.5  The available component declaration statements

DECLARE_ALGORITHM(X)

DECLARE_AUDITOR(X)

DECLARE_CONVERTER(X)

DECLARE_GENERIC_CONVERTER(X)                   [1]

DECLARE_OBJECT(X)

DECLARE_SERVICE(X)

DECLARE_NAMESPACE_ALGORITHM(N,X)               [2]

DECLARE_NAMESPACE_AUDITOR(N,X)

DECLARE_NAMESPACE_CONVERTER(N,X)

DECLARE_NAMESPACE_GENERIC_CONVERTER(N,X)

DECLARE_NAMESPACE_OBJECT(N,X)

DECLARE_NAMESPACE_SERVICE(N,X)
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14.4.1.3  Loading Components

Components within the component library are loaded in a file MyComponents_load.cpp. By 

convention, the name of this file is the package name concatenated with _load. The contents of this 

file are shown below:

14.4.1.4  CMT requirements file fragment to create a component library

The fragment of the package requirements file that creates a component library is shown below:.

Notes:

1. Declarations of the form DECLARE_GENERIC_CONVERTER(X) are used to declare the 

generic converters for DataObject and ContaineData Objectect classes. For 

DataObject classes, the argument should be the class name itself (e.g. EventHeader), 

whereas for ContaineData Objectect classes, the argument should be the class 

name concatenated with either List or Vector (e.g. CellVector) depending on 

whether the objects are associated with an ObjectList or ObjectVector.

2. Declarations of this form are used to declare components from explicit C++ namespaces. 

The first argument is the namespace (e.g. Atlfast), the second is the class name (e.g. 

CellMaker).

Listing 14.5  The available component declaration statements

Listing 14.6  The MyComponents_load.cpp file

#include "GaudiKernel/LoadFactoryEntries.h"

LOAD_FACTORY_ENTRIES( MyComponents )         [1]

Notes:

1. The argument of  LOAD_FACTORY_ENTRIES is the name of the component library.

Listing 14.7  Creating a component library

library MyPackage <list of files>     [1][2][3]

apply_pattern component_library       [3]
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14.4.1.5  Specifying component libraries at run-time

The fragment of the job options file that specifies the component library at run-time is shown below.

The convention in Gaudi is that component libraries have the same name as the package they belong to 

(prefixed by "lib" on Linux). When trying to load a component library, the framework will look for it 

in various places following this sequence:

Ñ Look for an environment variable with the name of the package, suffixed by "Shr" (e.g. 

${MyComponentsShr}). If it exists, it should translate to the full name of the library, 

without the file type suffix (e.g. ${MyComponentsShr} 

="$MYSOFT/MyComponents/v1/i386_linux22/libMyComponents" ).

Ñ Try to locate the file libMyComponents.so using the LD_LIBRARY_PATH (on Linux), 

or MyComponents.dll using the PATH (on Windows).

Notes:

1. The normal convention is for the library name to be the same as the package name. 

2. The <list of files> can either be an explicit list of files as shown, or wildcards may 

be used:

         library MyPackage *.cxx

3. Source files not located in the package src/ directory can be specified using the 

-s=<directory> option, which specifies a directory path relative to the src/ 

directory:

         library MyPackage *.cxx -s=components *.cxx

4. The component_library pattern  operates on the library specified in the previous 

library statement.

Listing 14.7  Creating a component library

Listing 14.8  Specifying a component library at run-time

ApplicationMgr.DLLs  += { "MyComponents" };   [1]

Notes:

1. This is a list property, allowing multiple such libraries to be specified in a single line.

2. It is important to use the Ò+=Ó syntax to append the new component library or libraries to 

any that might already have been configured.
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14.4.2 Linker (or installed) libraries

These are libraries containing implementation classes. For example, libraries containing code of a 

number of base classes or specific classes without abstract interfaces, etc. These libraries, contrary to 

the component libraries, export all the symbols and are needed during the linking phase in the 

application building. These libraries can be linked to the application "statically" or "dynamically", 

requiring a different file format. In the first case the code is added physically to the executable file. In 

this case, changes in these libraries require the application to be re-linked, even if these changes do not 

affect the interfaces. In the second case, the linker only adds into the executable minimal information 

required for loading the library and resolving the symbols at run time. Locating and loading the proper 

shareable library at run time is done exclusively using the LD_LIBRARY_PATH for Linux and PATH 

for Windows. The convention in Gaudi is that linker libraries have the same name as the package, 

suffixed by  "Lib" (and prefixed by "lib" on Linux, e.g. libMyPackageLib.so). 

14.4.2.1  CMT requirements file fragment to create a linker or installed library

The fragment of the package requirements file that creates a linker (or installed) library is shown 

below:..

Listing 14.9  Creating a linker/installled library

library MyPackage <list of files>     [1][2][3]

apply_pattern installed_library       [3]

Notes:

1. The normal convention is for the library name to be the same as the package name. 

2. The <list of files> can either be an explicit list of files as shown, or wildcards may 

be used:

         library MyPackage *.cxx

3. Source files not located in the package src/ directory can be specified using the 

-s=<directory> option, which specifies a directory path relative to the src/ 

directory:

         library MyPackage *.cxx -s=components *.cxx

4. The installed_library pattern  operates on the library specified in the previous 

library statement.
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14.4.3 Dual use libraries

Because component libraries are not designed to be linked against, it is important to separate the 

functionalities of these libraries from linker libraries. For example, consider the case of a DataProvider 

service that provides DataObjects for clients. It is important that the declarations and definitions of the 

DataObjects be handled by a different shared library than that handling the service itself. This implies 

the presence of two different packages - one for the component library, the other for the DataObjects. 

Clients should only depend on the second of these packages. Obviously the package handling the 

component library will in general also depend on the second package.

It is possible to have dual purpose libraries - ones which are simultaneously component and linker 

libraries. In general such libraries will contain DataObjects and ContainedData Objects, together with 

their converters and associated factories. It is recommended that such dual purpose libraries be 

separated from single purpose component or linker libraries. Consider the case where several 

Algorithms share the use of several DataObjects (e.g. where one Algorithm creates them and registers 

them with the transient event store, and another Algorithm locates them), and also share the use of some 

helper classes in order to decode and manipulate the contents of the DataObjects. It is recommended 

that three different packages be used for this - one pure component package for the Algorithms, one 

dual-purpose for the DataObjects, and one pure linker package for the helper classes.

14.4.3.1  CMT requirements file fragment to create a dual use library

The fragment of the package requirements file that creates a dual use library is shown below:.

Listing 14.10  Creating a dual use library

apply_pattern dual_use_library files="MyFile1.cxx MyFile2.cxx"

Notes:

1. The normal convention is for the library name to be the same as the package name. 

2. The list of files can either be an explicit list of files as shown, or wildcards may be used:

         library MyPackage *.cxx

3. Two component declaration files must exist in the src/components directory. They 

are:

         Pkg_entries.cxx

         Pkg_load.cxx

These have the same content as described in Section 14.4.1 for component libraries.

4. Factory code as described in Section 3.3.1 should be removed from the Algorithm, Service, 

Tool or Converter header file.
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14.4.4 Linking FORTRAN code

Any library containing FORTRAN code (more specifically, code that references COMMON blocks) 

must be linked statically. This is because COMMON blocks are, by definition, static entities. When 

mixing C++ code with FORTRAN, it is recommended to build separate libraries for the C++ and 

FORTRAN, and to write the code in such a way that communication between the C++ and FORTRAN 

worlds is done exclusively via wrappers. This makes it possible to build shareable libraries for the C++ 

code, even if it calls FORTRAN code internally. 
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Chapter 15  

Analysis utilities

15.1  Overview

In this chapter we give pointers to some of the third party software libraries that we use within Athena 

or recommend for use by algorithms implemented in Athena.

15.2  CLHEP

CLHEP (ÒClass Library for High Ener gy PhysicsÓ) is a set of HEP-specific foundation and utility 

classes such as random generators, physics vectors, geometry and linear algebra. It is structured in a set 

of packages independent of any external package. The documentation for CLHEP can be found on 

WWW at http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

CLHEP is used extensively inside Athena, in the GaudiSvc and GaudiDb packages.

15.3  ROOT

ROOT is used by Athena for I/O and as a persistency solution for event data, histograms and n-tuples. 

In addition, it can be used for interactive analysis, as discussed in Chapter 9. Information about ROOT 

can be found at http://root.cern.ch/

http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html
http://root.cern.ch/


page  168   



page  169

Appendix A  Options for standard components Version/Issue: 8.0.0

Appendix A  

Options for standard components

The following is a list of options that may be set for the standard components: e.g. data files for input, 

print-out level for the message service, etc. The options are listed in tabular form for each component 

along with the default value and a short explanation. The component name is given in the table caption 

thus: [ComponentName]. Note the used syntax in defaults is now obsolete b/c of the move to python.:.

Table A.1  Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning

EvtSel "" If "NONE", no event inputa 

EvtMax -1 Maximum number of events to process. The default is -1 (infi-

nite) unless EvtSel = "NONE"; in which case it is 10.

TopAlg {} List of top level algorithms. Format:

{<Type>/<Name>[, <Type2>/<Name2>,...]};

ExtSvc {} List of external services to be explicitly created by the Applica-

tionMgr (see section 10.2). Format:

{<Type>/<Name>[, <Type2>/<Name2>,...]};

OutStream {} Declares an output stream object for writing data to a persistent 

store, e.g. {ÒDstW riterÓ}; See also Table A.10

DLLs {} Search list of libraries for dynamic loading. Format: 

{<dll1>[,<dll2>,...]};

HistogramPersistency "NONE" Histogram and N-tuple persistency mechanism. 

Available options are "HBOOK", "ROOT", "NONE"

Runable "AppMgrRunable" Type of runable object to be created by Application manager
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EventLoop "EventLoopMgr" Type of event loop:

"EventLoopMgr" is standard event loop

"MinimalEventLoop" executes algorithms but does not read 

events

OutputLevel MSG::INFO Same as MessageSvc.OutputLevel.

See Table A.2 for possible values

The last two options define the source of the job options file and so they cannot be defined in the job options file 

itself. There are two possibilities to set these options, the first one is using a environment variable called 

JOBOPTPATH or setting the option to the application manager directly from the main programb. The coded 

option takes precedence.

JobOptionsType ÒFILEÓ Type of file (FILE implies ascii)

JobOptionsPath ÒjobOptions.txtÓ Path for job options source

a.  A basic DataObject object is created as event root ("/Event")

b.  The setting of properties from the main program is discussed in Chapter 2.

Table A.2  Standard Options for the message service [MessageSvc]

Option name Default value Meaning

OutputLevel 0 Verboseness threshold level: 

0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,

4=WARNING, 5=ERROR, 6=FATAL, 

7=ALWAYS

Format Ò% F%18W%S%7W%R%T  

%0W%MÓ

Format string. 

Table A.3  Standard Options for all algorithms [<myAlgorithm>]

Any algorithm derived from the Algorithm base class can override the global Algorithm options thus:

Option name

Default 

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Enable true If false, application manager skips execution of this algorithm

ErrorMax 1 Job stops when this number of errors is reached

Table A.1  Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning
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ErrorCount 0 Current error count

AuditInitialize false Enable/Disable auditing of Algorithm initialisation

AuditExecute true Enable/Disable auditing of Algorithm execution

AuditFinalize false Enable/Disable auditing of Algorithm finalisation

Table A.4  Standard Options for all services [<myService>]

Any service derived from the Service base class can override the global MessageSvc.OutputLevel thus:

Option 

name

Default 

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Table A.5  Standard Options for all Tools [<myTool>]

Any tool derived from the AlgTool base class can override the global MessageSvc.OutputLevel thus:

Option 

name

Default 

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Table A.6  Standard Options for all Associators [<myAssociator>]

Option name Default value Meaning

FollowLinks true Instruct the associator to follow the links instead of using cached information

DataLocation "" Location where to get association information in the data store

Table A.7  Standard Options for Auditor service [AuditorSvc]

Option name

Default 

value Meaning

Auditors {}; List of Auditors to be loaded and to be used. 

See section 10.7 for list of possible auditors

Table A.3  Standard Options for all algorithms [<myAlgorithm>]

Any algorithm derived from the Algorithm base class can override the global Algorithm options thus:

Option name

Default 

value Meaning
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Table A.8  Standard Options for all Auditors [<myAuditor>]

Any Auditor derived from the Auditor base class can override the global Auditor options thus:

Option name

Default 

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Enable true If false, application manager skips execution of the auditor

Table A.9  Options of Algorithms in GaudiAlg package (see Section 3.5)

Algorithm name Option Name Default value Meaning

EventCounter Frequency 1; Frequency with which number of events should 

be reported

Prescaler PercentPass 100.0; Percentage of events that should be passed

Sequencer Members Names of algorithms in the sequence

Sequencer BranchMembers Names of algorithms on the branch

Sequencer StopOverride false; If true, do not stop sequence if a filter fails

Table A.10  Options available for output streams (e.g. DstWriter)

Output stream objects are used for writing user created data into data files or databases. They are created and 

named by setting the option ApplicationMgr.OutStream . For each output stream the following options are 

available

Option name Default value Meaning

ItemList {} The list of data objects to be written to this stream, e.g.

{Ò/Event#1Ó,ÓEvent/MyT racks/#1Ó};

Preload true; Preload items in ItemList

Output "" Output data stream specification. Format:

{ÒDATAFILE=’mydst.root’ TYP=’ROOT’Ó};

OutputFile "" Output file specification - same as DATAFILE in previous option

EvtDataSvc ÒEventDataSvcÓ The service from which to retrieve objects.

EvtConversion-

Svc

"EventPersisten-

cySvc"

The persistency service to be used

AcceptAlgs {} If any of these algorithms sets filterflag=true; the event is 

accepted

RequireAlgs {} If any of these algorthms is not executed, the event is rejected

VetoAlgs {} If any of these algorithms does not set filterflag = true; the event is 

rejected
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Table A.11  Standard Options for persistency services (e.g. EventPersistencySvc)

Option name Default value Meaning

CnvServices {} Conversion services to be used by the service to load or 

store persistent data (e.g. "RootEvtCnvSvc")

Table A.12  Standard Options for conversion services (e.g. RootEvtCnvSvc)

Option name Default value Meaning

DbType "" Persistency technology (e.g. "ROOT")

Table A.13  Standard Options for the standard event selector [EventSelector]

Option name Default value Meaning

Input {} Input data stream specification.

Format: "<tagname> = Õ<tagvalue>Õ <opt>"

Possible tags are different depending on input data type.

For Event data, see Section 7.10.2

FirstEvent 1 First event to process (allows skipping of preceding events)

PrintFreq 10 Frequency with which event number is reported 

Table A.14  Event Tag Collection Selector [EventCollectionSelector]

The following options are used internally by the EventCollectionSelector. They should not normally be used 

directly by users, who should set them via the "tags" of the EventSelector.Input option

Option name

Corresponding tag of 

EventSelector.Input Default value Meaning

CnvService SVC ÒEvtT upleSvcÓ Conversion service to be used

Authentication AUTH "" Authentication to be used

Container "B2PiPi" Container name

Item "Address" Item name

Criteria SEL "" Selection criteria

DB DATAFILE "" Database name

DbType TYP "" Database type

Function FUN "NTuple::Selector" Selection function 
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Table A.15  Standard Options for Random Numbers Generator Service [RndmGenSvc]

Option name Default value Meaning

Engine ÒHepRndm::Engine<RanluxEngine>Ó Random number generator engine

Seeds Table of generator seeds

Column 0 Number of columns in seed table -1

Row 1 Number of rows in seed table -1

Luxury 3 Luxury value for the generator

UseTable false Switch to use seeds table

Table A.16  Standard Options for Particle Property Service [ParticlePropertySvc]

Option name Default value Meaning

ParticlePropertiesFile Ò($LHCBDBASE)/cdf/particle.cdfÓ Particle properties database location

Table A.17  Standard Options for Chrono and Stat Service [ChronoStatSvc]

Option name Default value Meaning

ChronoPrintOutTable true Global switch for profiling printout

PrintUserTime true Switch to print User Time

PrintSystemTime false Switch to print System Time

PrintEllapsedTime false Switch to print Elapsed time (Note typo in option name!)

ChronoDestinationCout false If true, printout goes to cout rather than MessageSvc

ChronoPrintLevel 3 Print level for profiling (values as for MessageSvc)

ChronoTableToBeOrdered true Switch to order printed table

StatPrintOutTable true Global switch for statistics printout

StatDestinationCout false If true, printout goes to cout rather than MessageSvc

StatPrintLevel 3 Print level for profiling (values as for MessageSvc)

StatTableToBeOrdered true Switch to order printed table
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A.1  Obsolete options

The following options are obsolete and should not be used. They are documented here for completeness 

and may be removed in a future release.

Table A.18  Obsolete Options

Obsolete Option Replacement

EventSelector.EvtMax ApplicationMgr.EvtMax (Table A.1)
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Appendix B  

Design considerations

B.1  Generalities

In this chapter we look at how you might actually go about designing and implementing a real physics 

algorithm. It includes points covering various aspects of software development process and in 

particular:

¥ The need for more Òthinking before codingÓ when using an OO language like C++.

¥ Emphasis on the specification and analysis of an algorithm in mathematical and natural 

language, rather than trying to force it into (unnatural?) object orientated thinking.

¥ The use of OO in the design phase, i.e. how to map the concepts identified in the analysis 

phase into data objects and algorithm objects. 

¥ The identification of classes which are of general use. These could be implemented by the 

computing group, thus saving you work!

¥ The structuring of your code by defining private utility methods within concrete classes.

When designing and implementing your code we suggest that your priorities should be as follows: (1) 

Correctness, (2) Clarity, (3) Efficiency and, very low in the scale, OOness

Tips about specific use of the C++ language can be found in the coding rules document [11] or 

specialized literature.

http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps
http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps
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B.2  Designing within the Framework

A physicist designing a real physics algorithm does not start with a white sheet of paper. The fact that 

he or she is using a framework imposes some constraints on the possible or allowed designs. The 

framework defines some of the basic components of an application and their interfaces and therefore it 

also specifies the places where concrete physics algorithms and concrete data types will fit in with the 

rest of the program. The consequences of this are: on one hand, that the physicists designing the 

algorithms do not have complete freedom in the way algorithms may be implemented; but on the other 

hand, neither do they need worry about some of the basic functionalities, such as getting end-user 

options, reporting messages, accessing event and detector data independently of the underlying storage 

technology, etc. In other words, the framework imposes some constraints in terms of interfaces to basic 

services, and the interfaces the algorithm itself is implementing towards the rest of the application. The 

definition of these interfaces establishes the so called Òmaster wallsÓ of the data processing application 

in which the concrete physics code will be deployed. Besides some general services provided by the 

framework, this approach also guarantees that later integration will be possible of many small 

algorithms into a much larger program, for example a reconstruction program. In any case, there is still 

a lot of room for design creativity when developing physics code within the framework and this is what 

we want to illustrate in the next sections. 

To design a physics algorithm within the framework you need to know very clearly what it should do 

(the requirements). In particular you need to know the following:

¥ What is the input data to the algorithm? What is the relationship of these data to other data 

(e.g. event or detector data)?

¥ What new data is going to be produced by the algorithm?

¥ WhatÕs the purpose of the algorithm and how is it going function? Document this in terms of 

mathematical expressions and plain english.1

¥ What does the algorithm need in terms of configuration parameters?

¥ How can the algorithm be partitioned (structured) into smaller Òalgorithm chunksÓ that make 

it easier to develop (design, code, test) and maintain?

¥ What data is passed between the different chunks? How do they communicate?

¥ How do these chunks collaborate together to produce the desired final behaviour? Is there a 

controlling object? Are they self-organizing? Are they triggered by the existence of some 

data?

¥ How is the execution of the algorithm and its performance monitored (messages, histograms, 

etc.)?

¥ Who takes the responsibility of bootstrapping the various algorithm chunks.

For didactic purposes we would like to illustrate some of these design considerations using a 

hypothetical example. Imagine that we would like to design a tracking algorithm based on a 

Kalman-filter algorithm.

1.  Catalan is also acceptable.
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B.3  Analysis Phase

As mentioned before we need to understand in detail what the algorithm is supposed to do before we 

start designing it and of course before we start producing lines of C++ code. One old technique for that, 

is to think in terms of data flow diagrams, as illustrated in Figure A.1, where we have tried to 

decompose the tracking algorithm into various processes or steps.

In the analysis phase we identify the data which is needed as input (event data, geometry data, 

configuration parameters, etc.) and the data which is produced as output. We also need to think about 

the intermediate data. Perhaps this data may need to be saved in the persistency store to allow us to run 

a part of the algorithm without starting always from the beginning.

We need to understand precisely what each of the steps of the algorithm is supposed to do. In case a step 

becomes too complex we need to sub-divide it into several ones. Writing in plain english and using 

Figure A.1 Hypothetical decomposition of a tracking algorithm based on a Kalman filter using a Data flow Diagram
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form / refine 

track 
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pad hits
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to next 
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proto-tracks

select/discard 

proto-track

proto-tracks

proto-track

station hits
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Geometry store

geometry

geometry

geometry



page  180   

mathematics whenever possible is extremely useful. The more we understand about what the algorithm 

has to do the better we are prepared to implement it.

B.4  Design Phase

We now need to decompose our physics algorithm into one or more Algorithms (as framework 

components) and define the way in which they will collaborate. After that we need to specify the data 

types which will be needed by the various Algorithms and their relationships. Then, we need to 

understand if these new data types will be required to be stored in the persistency store and how they 

will map to the existing possibilities given by the object persistency technology. This is done by 

designing the appropriate set of Converters. Finally, we need to identify utility classes which will help 

to implement the various algorithm chunks.

B.4.1  Defining Algorithms

Most of the steps of the algorithm have been identified in the analysis phase. We need at this moment to 

see if those steps can be realized as framework Algorithms. Remember that an Algorithm from the view 

point of the framework is basically a quite simple interface (initialize, execute, finalize) with a few 

facilities to access the basic services. In the case of our hypothetical algorithm we could decide to have 

a ÒmasterÓ Algorithm which will orchestrate the work of a number of sub-Algorithms. This master 

Algorithm will be also be in charge of bootstraping them. Then, we could have an Algorithm in charge 

of finding the tracking seeds, plus a set of others, each one associated to a different tracking station in 

charge of propagating a proto-track to the next station and deciding whether the proto-track needs to be 

kept or not. Finally, we could introduce another Algorithm in charge of producing the final tracks from 

the surviving proto-tracks. 

It is interesting perhaps in this type of algorithm to distribute parts of the calculations (extrapolations, 

etc.) to more sophisticated ÒhitsÓ than just the unintelligent original ones. This could be done by 

instantiating new data types (clever hits) for each event having references to the original hits. For that, 

it would be required to have another Algorithm whose role is to prepare these new data objects, see 

Figure A.2.

The master Algorithm (TrackingAlg) is in charge of setting up the other algorithms and scheduling their 

execution. It is the only one that has a global view but it does not need to know the details of how the 

different parts of the algorithm have been implemented. The application manager of the framework 

only interacts with the master algorithm and does not need to know that in fact the tracking algorithm is 

implemented by a collaboration of Algorithms. 

B.4.2  Defining Data Objects

The input, output and intermediate data objects need to be specified. Typically, the input and output are 

specified in a more general way (algorithm independent) and basically are pure data objects. This is 
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because they can be used by a range of different algorithms. We could have various types of tracking 

algorithm all using the same data as input and producing similar data as output. On the contrary, the 

intermediate data types can be designed to be very algorithm dependent. 

The way we have chosen to communicate between the different Algorithms which constitute our 

physics algorithm is by using the transient event data store. This allows us to have low coupling 

between them, but other ways could be envisaged. For instance, we could implement specific methods 

in the algorithms and allow other ÒfriendÓ algorithms to use them directly .

Concerning the relationships between data objects, it is strongly discouraged to have links from the 

input data objects to the newly produced ones (i.e. links from hits to tracks). In the other direction this 

should not be a problem (i.e from tracks to constituent hits).

For data types that we would like to save permanently we need to implement a specific Converter. One 

converter is required for each type of data and each kind of persistency technology that we wish to use. 

This is not the case for the data types that are used as intermediate data, since these data are completely 

transient.

B.4.3  Mathematics and other utilities

It is clear that to implement any algorithm we will need the help of a series of utility classes. Some of 

these classes are very generic and they can be found in common class libraries. For example the 

standard template library. Other utilities will be more high energy physics specific, especially in cases 

like fitting, error treatment, etc. We envisage making as much use of these kinds of utility classes as 

possible. 

Some algorithms or algorithm-parts could be designed in a way that allows them to be reused in other 

similar physics algorithms. For example, perhaps fitting or clustering algorithms could be designed in a 

generic way such that they can be used in various concrete algorithms. During design is the moment to 

identify this kind of re-usable component or to identify existing ones that could be used instead and 

adapt the design to make possible their usage.
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Job Options Grammar

C.1  The EBNF grammar of the Job Options files

The syntax of the Job-Options-File is defined through the following EBNF-Grammar.

Job-Options-File =

{Statements} .

Statements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} | {Platform-Dependency} .

AssertableStatements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} .

AssertionStatement =

Õ#ifdef Õ | Õ#ifndef Õ .

Platform-Dependency =
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AssertionStatement ÕWIN32Õ <AsertableStatements> [ #else <AssertableStatements> ] #endif 

Include-Statement = 

Ô#includeÕ  string .

Assign-Statement = 

Identifier Ô.Õ  Identifier Ô=Õ  value Ô;Õ  .

Append-Statement = 

Identifier Ô.Õ  Identifier Ô+=Õ value Ô;Õ  .

Identifier =

letter {letter | digit} .

value =

boolean | integer | double | string | vector .

vector =

Ô{Õ  vectorvalue { Ô,Õ  vectorvalue } Ô}Õ  .

vectorvalue =

boolean | integer | double | string .

boolean =

ÔtrueÕ  | ÔfalseÕ  .
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integer =

prefix scientificdigit .

double =

( prefix <digit> Ô.Õ  [ scientificdigit ] ) | 

( prefix Ô.Õ  scientificdigit ) .

string =

ÔÓÕ  {char} ÔÓÕ  .

scientificdigit =

< digit> [ ( ÔeÕ  | ÔEÕ  ) < digit> ] .

digit =

<figure> .

prefix =

[ Ô+Õ  | Ô-Õ  ] .

figure =

Ô0Õ  | Ô1Õ  | Ô2Õ  | Ô3Õ  | Ô4Õ  | Ô5Õ  | Ô6Õ  | Ô7Õ  | Ô8Õ  | Ô9Õ.

char =

any character from the ASCII-Code

letter =

set of all capital- and non-capital letter
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C.2  Job Options Error Codes and Error Messages

The table below lists the error codes and error messages that the Job Options compiler may generate, 

their reason and how to avoid them.

Table 15.1  Possible Error-Codes

Error-Code Reason How to avoid it

Error #000 Internal compiler error - This code normally should never 

appear. If this code is shown there 

is maybe a problem with your 

memory, your disk-space or the 

property-file is corrupted.

Error #001 Included property-file 

does not exists or can not be 

opened

* wrong path in #include-directive

* wrong file or mistyped filename

* file is exclusively locked by 

another application

* no memory available to open this 

file

Please check if any of the listed 

reasons occured in your case.

Warning #001 File already 

included by another file

The file was already included by 

another file and will not be 

included a second time.

The compiler will ignore this 

#include-directive and will con-

tinue with the next statement.

Remove the #include-directive

Error #002 syntax error: Object 

expected

The compiler expected an object at 

the given position. 

Maybe you mistyped the name of 

the object or the object contains 

unknown characters or does not fit 

the given rules.

Error #003 syntax error: Missing 

dot between Object and Property-

name

The compiler expect a dot between 

the Object and the Propertyname.

Check if the dot between the 

Object and the Propertyname is 

missing.

Error #004 syntax error: Identifier 

expected

The compiler expected an identifier 

at the given position.

Maybe you mistyped the name of 

the identifier or the identifier con-

tains unknown characters or does 

not fit the given rules.

Error #005 syntax error: Missing 

operator Õ+=Õ or Õ=Õ

The compiler expected an operator 

between the Propertyname and the 

value.

Check if there is a valid operator 

after the Propertyname.

Note that a blank or tab is not 

allowed between Õ+=Õ!



page  187

Appendix C  Job Options Grammar Version/Issue: 8.0.0

Error #006 String is not terminated 

by a Ò

A string (value) was not terminated 

by a Ò.

Check if all your strings are begin-

ning and ending with Ò. Note that 

the position given by the compiler 

can be wrong because the compiler 

may thought that following state-

ments are part of the string!

Error #007 syntax error: 

#include-statement is not correct

The next token after the #include is 

not a string.

Make sure that after the 

#include-directive there is speci-

fied the file to include. The file 

must be defined as a string!

Error #008 syntax error: #include 

does not end with a ;

The include-directive was termi-

nated by a ;

Remove the ; after the 

#include-directive.

Error #009 syntax error: Values 

must be separated with Õ,Õ

One or more values within a vector 

were not separated with a Õ,Õ  or one 

ore more values within a vector are 

mistyped.

Check if every value in the vector 

is separated by a Õ,Õ. If so the rea-

son for this message may result in 

mistyped values in the vector 

(maybe there is a blank or tab 

between numbers).

Error #010 syntax error: Vector 

must end with Õ}Õ

The closing bracket is missing or 

the vector is not terminated cor-

rectly.

Check, if the vector ends with a Õ}Õ 

and if there is no semicolon before 

the ending-bracket.

Error #011 syntax error: Statement 

must end with a ;

The statement is not terminated 

correctly.

Check if the statement ends with a 

semicolon Õ;Õ.

Runtime-Error #012: Cannot 

append to object because it does 

not exists

The compiler cannot append the 

values to the object.propertyname 

because the object does not exist.

Check if the refered object is 

defined in one of the included files, 

if so check if you writed the 

object-name exactly like in the 

include-file.

Runtime-Error #013 Cannot 

append to object because Property 

does not exists

The compiler cannot append the 

values to the object.propertyname 

because the property does not exist.

Check if there was already some-

thing assigned to the refered prop-

erty (in the include-file or in the 

current file). If not then modify the 

append-statement into a 

assign-statement.

If there was already something 

assigned, check if the object-name 

and the property-name are typed 

correctly.

Table 15.1  Possible Error-Codes

Error-Code Reason How to avoid it
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Error #014 Elements in the vector 

are not of the same type

One or more elements in the vector 

have a different type than the first 

element in the vector. All elements 

must have the same type like the 

first declarated element.

Check declaration of vector, check 

the types and check, if maybe a 

value is mistyped.

Error #015 Value(s) expected The compiler didnÕt find values to 

append or assign

Check the statement if there exists 

values and if they are written cor-

rectly.

Maybe this error is a result of a 

previous error!

Error #016 Specified property-file 

does not exist or can not be 

resolved

The compiler was not able to 

include a property-file or didnÕt 

found the file.

A reason can be that the compiler 

was not able to resolve an environ-

ment-variable which points to the 

location of the property-file.

Check if you are using enviorn-

ment-variables to resolve the file, if 

they are mistyped (wether in the 

system or in the #include-directive) 

or not set correctly.

Error #017 #ifdef not followed by 

an identifier

The #ifdef-statement is not fol-

lowed by the assertion-identifier 

(WIN32).

Add WIN32 after the #ifdef-state-

ment.

Error #018 identifier in #ifdef / 

#ifndef not known

The assertion-identifier used in the 

#ifdef- /#ifndef-statement is not 

known. At the moment there can 

only be used WIN32!

Change identifier to WIN32.

Error #019 #ifdef / #ifndef / #else / 

#endif doesnÕt end with a Õ;Õ

A semicolon was found after the 

#ifdef- / #ifndef- / #else- / 

#endif-statement. These state-

ments donÕt end with a semicolon.

Remove the semicolon after the 

#ifdef / #ifndef / #else / 

#endif-statement.

Table 15.1  Possible Error-Codes

Error-Code Reason How to avoid it
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Appendix D  

The ATLAS Development Model

D.1  Overview

The ATLAS development model is described, together  with the tools and concepts that are necessary in 

order to perform software development.

D.2  Packages

ATLAS software is organized into packages. A package corresponds to a CVS module, but more 

conceptually to a coherent set of source code and header files that is managed and accessed as a unit. 

Source code from one package can depend upon code in another one, typically through the inclusion of 

a C++ header (.h) file, and such dependencies are managed at the level of the package. Thus if any one 

file in one package depends upon any one file in another one,the first package is said to depend upon 

the second. 

The following different types of packages appear in the ATLAS software repository:

¥ Code packages. These packages contain source code (.cxx and .h) files, although several 

legacy FORTRAN packages exist. In most cases a code package is designed to create a library 

or application.

¥ Policy packages. These packages setup the environment (e.g. compiler version and options) 

for the processing of other packages. They typically do not contain any source code, but just 

setup macros and environment variables.



page  190   

¥ Container packages. These packages provide a mechanism by which other packages may be 

logically grouped together and operated on as a single unit. In some cases a container package  

corresponds to a directory hierarchy within CVS, but that is not always the case. A container 

packagecan ceate a view into a set of other packages, where multiple views may be created. 

Thus one view might organize the software in terms of each detector subsystem, whereas 

another viewmight organize the software in  terms of the processing phase (e.g. Simulation, 

Reconstruction).

¥ Interface or Glue packages. These packages provide a mechanism for accessing external 

software, software which is not developed by ATLAS, but is rather installed and managed as a 

unit.

Each package is associated with a version (typically of the form pkg-ii-jj-kk, where i, j and j are 

integers), which is used  to identify the state of the package at a snapshot in time. The act of specifying 

a new version is known as tagging the package. Once a package has reached a certain levelof stability, 

it can be made known to the Tag Collector [ref] so that it may become part of a release (see 

Appendix D.3).

D.3  Releases

An ATLAS release is a self-consistent snapshot of the software (both internal ATLAS-produced and 

externally supplied) at an instant at time. The following is a shortened version of the ATLAS release 

policy, the full version of which is  given online at 

[http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/Release/Policies/ReleasePolicies.html]. 

The following types of releases are supported:

¥ Nightly release. A total of 7 nightly releases is created, one every 24 hours, starting at 

approximately midnight GMT. Each release has a lifetime of 7 days before it is overwritten, 

allowing developers time to understand and fix problems.

¥ Developer release. A developer release is built approximately every three weeks.

¥ Production release.

¥ Bug-fix release.

¥ Base release. A release that is being used as a baseline for testing new code is called a base 

release. Any of the nightly, developer, production and bug-fix releases can be used in such a 

way in conjunction with a test release.

¥ Test release. A test release is a set of packages (one or more) that are being tested in 

conjunction with a base release. A test release may provide as little as setting up of a run-time 

environment, or as much as the checkout of several packages.
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D.4  CMT - the Configuration Management Tool

D.5  Establishing a login environment

D.6  Setting up a test release
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Appendix E  

Package and Directory Structure

E.1  Subsystem Package Organization

In the following, Xxx is some sensible subdivision of the system - detector subsystem, tracking, particle 

id,etc.

A finer subdivision of packages is also supported, if this minimizes dependencies or overloading of a 

single package, thus.

Similarly for Algorithms and Conditions data. Possibilities for Algorithms could be phases of the 

reconstruction chain, or separating those associated with the generation of calibrations from those 

associated with normal event processing etc. Similarly Conditions data could separate out calibration 

from alignment data.

In the above, a utility or helper class is an algorithmic class that can be used by classes from multiple 

other packages. If they are designed to be used by a particular Algorithm or Service, they can reside in 

XxxAlgs       Algorithms (and optionally helper classes)

XxxSvc        A Service (and optionally helper classes)

XxxUtils      Utility/Helper classes (optional)

XxxEvent      Event data

XxxDetDescr   Detector Description data

XxxConditions Conditions data

Figure 15.1 Package Organization

XxxSimEvent

XxxRawEvent

XxxRecEvent

Figure 15.2 Alternative Package Organization
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the same package as that. However, if they have a more general usefulness, they should reside in 

separate packages, perhaps not even as part of the Xxx subsystem, but in a more general package 

structure (e.g. Tools or Utilities).

E.2  Utilities Package Directory Structure

The structure for packages that contain classes that are utility or helper or algorithmic code is as follows 

(using XxxUtils as an example):

Notes:

1. These packages create a shared library that is designed to be linked against.

2. The installed_library pattern for shared libraries should be used as described in  

Appendix 14.4.2. 

E.3  Algorithm and Service Package Directory Structure

The structure for packages that declare Algorithms or Services is as follows (using XxxAlgs as an 

example):

Notes:

1. These packages should use one of two patterns:

1. component_library - for simple component libraries

2. dual_use_library  - for Algorithms or Services that are capable of being 

inherited from.

Thesze are described in detail in Appendix 14.4.1 and Appendix 14.4.3.

XxxUtils/cmt                       Normal CMT directory

        /XxxUtils                  Public Header files

        /src                       All source files and private header files

Figure 15.3 Utilities Package Directory Structure

XxxAlgs/cmt                       Normal CMT directory

       /XxxAlgs                   Public Header files

       /src                       All source files and private header files

       /src/components            Component library .cxx files

       /share                     Job Options files etc.

                                  [this name is historical from SRT days]

Figure 15.4 Algorithm and Service Package Directory Structure
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E.4  Data Package Directory Structure

The structure for the XxxEvent, XxxDetDescr and XxxConditions packages is as follows (using 

XxxEvent as an example):

Notes:

XxxEvent/cmt                      Normal CMT directory.

        /XxxEvent                 Header .h files

        /src                      Source .cxx files

        /src/components           Component library .cxx files

Figure 15.5 Data PackagePackage Directory Structure
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Appendix F  

Standard ATLAS Patterns and Variables

F.1  Overview

This appendix describes the standard ATLAS patterns that are declared in the AtlasPolicy package.

F.2  Platform Environment Variables

Standard values of the CMTCONFIG environment variable

CMTCONFIGPlatform   Compiler     Options

---------       --------   --------     -------

Linux-gcc-dbg     Linux   gcc 2.95.2    debug

Linux-gcc-opt     Linux   gcc 2.95.2    optimized (-O2)

Linux-gcc-prof    Linux   gcc 2.95.2    profiled (-pg) optimized (-O2)

Solaris-gcc-dbg   Solaris CC 5.1/2      debug

Solaris-gcc-opt   Solaris CC 5.1/2      optimized (O2)

Solaris-gcc-prof  Solaris CC 5.1/2      profiled (-pg) optimized (-O2)
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The current Solaris compiler, although reporting itself as CC 5.1, has been patched to the CC 5.2 

functionality.

F.3  Patterns controlling include paths

include_path

    Useage:

        apply_pattern include_path [extras="<dirs>"]

    Description:

        Adds the list of directories specified by the "extras"

        argument to the -I include search path. The directories

        should be specified relative to the cmt/ directory.

      

no_include_path

    Useage:

        apply_pattern no_include_path

    Description:

        Disables the default -I include path such that none is 

        setup. This pattern may be combined with the "include_path"

        pattern to override the default include search path.     
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F.4  Patterns controlling library creation

installed_library

component_library

dual_use_library

These are described in the Appendix "Installed, Component and Dual Use Libraries".

default_library

default_installed_library

F.5  Patterns controlling linker options

default_linkopts

default_no_share_linkopts

installed_linkopts

F.6  Patterns for establishing a run-time environment

declare_runtime
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    Useage:

        apply_pattern declare_runtime [extras="<files>"]

    Description:

        Declares that the .txt and .py files in the share/

        directory should be installed in the target run/

        directory. This default may be extended by specifying

        the optional "extras" argument.

      

declare_runtime_extras

    Useage:

       apply_pattern declare_runtime_extras [extras="<files>"]

    Description:

        Similar to "declare_runtime" but does not declare any

        files by default. The list of run-time files should

        be declared using the "extras" argument.

      

install_runtime

    Useage:

        declare_pattern install_runtime

    Description:

        Creates the run/ directory in the calling package, and 

installs all files that were declared by other packages
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using the "declare_runtime" or "declare_runtime_extras"

patterns.
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	10.3.3 Job options file format
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	Integer-type, written as an integer value (containing one or more of the digits ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’)
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	String type, written within a pair of double quotes (‘ ” ’)
	Vector of the types above, within array-brackets (’{’, ’}’), separated by a comma (’,’)

	10.3.3.2 Append Statement
	10.3.3.3 Including other Job Option Files
	10.3.3.4 Platform dependent execution
	Table 1

	10.3.3.5 Switching on/off printing
	1: // Switch off printing
	2: #pragma print off
	3: ..(some job options)
	4: //Switch printing back on
	5: #pragma print on



	10.4 The Standard Message Service
	Table 2
	Table 3
	10.4.1 The MsgStream utility
	Listing 10.5 Use of a MsgStream object.
	1: #include “GaudiKernel/MgsStream.h”
	2:
	3: StatusCode myAlgo::finalize() {
	4: StatusCode status = Algorithm::finalise();
	5: MsgStream log(msgSvc(), name());
	6: if ( status.isFailure() ) {
	7: // Print a two line message in case of failure.
	8: log << MSG::ERROR << “ Finalize failed” << endl
	9: << “Error initializing Base class.” << endreq;
	10: }
	11: else {
	12: log << MSG::DEBUG << “Finalize completed successfully” << endreq;
	13: }
	14: return status;
	15: }

	10.4.1.1 User interface
	Insertion Operator
	MsgStream& operator <<(TYPE arg);
	MsgStream& operator <<(MSG::Level level);
	Accepted Stream Manipulators
	endl
	ends
	flush
	endreq
	endmsg
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	10.5.3 Service Interface
	Listing 10.6 The IParticlePropertySvc interface.
	Listing 1

	10.5.4 Examples
	Listing 10.7 Code fragment to find particle properties by particle name.
	Listing 10.8 Code fragment showing how to use the map iterators to access particle properties.


	10.6 The Chrono & Stat service
	10.6.1 Code profiling
	Listing 2
	Listing 3
	1: svc->chronoStop("Tag");
	2: svc->chronoStop("Tag");
	3: svc->chronoStart("Tag");
	4: svc->chronoStart("Tag");
	5: svc->chronoStop("Tag");
	6: svc->chronoStop("Tag");
	7: svc->chronoStart("Tag");
	8: svc->chronoStart("Tag");
	9: svc->chronoStop("Tag");


	10.6.2 Statistical monitoring
	Listing 4
	1: /// ... Flag and Weight to be accumulated:
	2: svc->stat( " Number of Tracks " , Flag , Weight );


	10.6.3 Chrono and Stat helper classes
	10.6.3.1 Chrono
	Listing 5
	1: #include GaudiKernel/Chrono.h
	2: /// ...
	3: { // begin of the scope
	4: Chrono chrono( chronoSvc() , "ChronoTag" ) ;
	5: /// some codes:
	6: ...
	7: ///
	8: } // end of the scope
	9: /// ...


	10.6.3.2 Stat
	Listing 6
	1: GaudiKernel/Stat.h
	2: /// ...
	3: Stat stat( chronoSvc() , "StatTag" , Flag , Weight ) ;
	4: /// ...



	10.6.4 Performance considerations
	Listing 7
	1: /// ...
	2: { /// begin of the scope
	3: Chrono chrono( chronoSvc() , "Good Chrono"); /// OK
	4: long double a = 0 ;
	5: for( long i = 0 ; i < 1000000 ; ++i )
	6: {
	7: Chrono chrono( svc , "Bad Chrono"); /// not OK
	8: /// some codes :
	9: a += sin( cos( sin( cos( (long double) i ) ) ) );
	10: /// end of codes
	11: Stat stat ( svc , "Bad Stat", a ); /// not OK
	12: }
	13: Stat stat ( svc , "Good Stat", a); /// OK
	14: } /// end of the scope!
	15: /// ...
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	10.8 The Random Numbers Service
	Figure 10.1 The architecture of the random number service. The client requests from the service a random number generator satisfying certain criteria
	Listing 10.9 Example of the use of the random number generator to fill a histogram with a Gaussian distribution within a standard Athena algorithm
	1: Rndm::Numbers gauss(randSvc(), Rndm::Gauss(0.5,0.2));
	2: if ( gauss ) {
	3: IHistogram1D* his = histoSvc()->book("/stat/2","Gaussian",40,0.,3.);
	4: for ( long i = 0; i < 5000; i++ )
	5: his->fill(gauss(), 1.0);
	6: }

	Listing 10.10 Example of the use of the random number generator within a standard Athena algorithm, for use at every event. The wrapper to the generator is part of the Algorithm itself and must be initialized before being used. Afterwards the...
	1: #include "GaudiKernel/RndmGenerators.h"
	2:
	3: // Constructor
	4: class myAlgorithm : public Algorithm {
	5: Rndm::Numbers m_gaussDist;
	6: ...
	7: };
	8:
	9: // Initialisation
	10: StatusCode myAlgorithm::initialize() {
	11: ...
	1: StatusCode sc=m_gaussDist.initialize( randSvc(), Rndm::Gauss(0.5,0.2));
	2: if ( !status.isSuccess() ) {
	3: // put error handling code here...
	4: }
	5: ...
	6: }


	10.9 The Incident Service
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	10.10 The Gaudi Introspection Service
	Listing 10.11 CMT requirements for generation of data dictionary of the LHCbEvent package

	10.11 Developing new services
	10.11.1 The Service base class
	Figure 10.1 Implementation of a concrete service class. Though not shown in the figure, both of the IConcreteSvcType interfaces are derived from IInterface.

	10.11.2 Implementation details
	1. Define the interfaces
	2. Derive the concrete service class from the Service base class.
	3. Implement the queryInterface() method.
	4. Implement the initialize() method. Within this method you should make a call to Service::initialize() as the first statement in the method and also make an explicit call to setProperties() in order to read the service’s properties from the...
	Listing 10.12 An interface class
	Listing 10.13 A minimal service implementation





	Chapter 11 Tools and ToolSvc
	11.1 Overview
	11.2 Tools and Services
	11.2.1 “Private” and “Shared” Tools
	11.2.2 The Tool classes
	11.2.2.1 The AlgTool base class
	Listing 11.1 The definition of the AlgTool Base class. Highlighted in bold are methods relevant for the implementation of concrete tools.
	1: class AlgTool : public virtual IAlgTool,
	2: public virtual IProperty {
	3:
	4: public:
	5: // Standard Constructor.
	6: AlgTool( const std::string& type, const std::string& name, const IInterface* parent);
	7:
	8: ISvcLocator* serviceLocator() const;
	9: IMessageSvc* msgSvc() const;
	10:
	11: virtual StatusCode setProperty( const Property& p );
	12: virtual StatusCode setProperty( std::istream& s );
	13: virtual StatusCode setProperty( const std::string& n, const std::string& v );
	14: virtual StatusCode getProperty(Property* p) const;
	15: virtual const Property& getProperty( const std::string& name ) const;
	16: virtual StatusCode getProperty( const std::string& n,std::string& v ) const;
	17: virtual const std::vector<Property*>& getProperties( ) const;
	18:
	19: StatusCode setProperties();
	20:
	21: template <class T>
	22: StatusCode declareProperty(const std::string& name, T& property) const
	23:
	24: virtual const std::string& name() const;
	25: virtual const std::string& type() const;
	26: virtual const IInterface* parent() const;
	27:
	28: virtual StatusCode initialize();
	29: virtual StatusCode finalize();
	30:
	31: virtual StatusCode queryInterface(const IID& riid, void** ppvUnknown);
	32: void declInterface( const IID&, void*);
	33: template <class I> class declareInterface { public: template <class T> declareInterface(T* tool) }
	34:
	35: protected:
	36: // Standard destructor.
	37: virtual ~AlgTool();

	Constructor -
	Access to Services -
	Properties -
	IAlgTool Interface -
	Tools Interfaces -
	Concrete tools must implement additional interfaces that will inherit from IAlgTool. When a component implements more that one interface it is necessary to "recognize" the various interfaces. This is taken care of by the AlgTool base class on...

	11.2.2.2 Tools identification
	11.2.2.3 Concrete tools classes
	Figure 11.1 Tools class hierarchy

	11.2.2.4 Implementation of concrete tools
	Listing 11.2 Example of a concrete tool additional interface
	1: static const InterfaceID IID_IVertexSmearer("IVertexSmearer", 1 , 0);
	2:
	3: class IVertexSmearer : virtual public IAlgTool {
	4: public:
	5: /// Retrieve interface ID
	6: static const InterfaceID& interfaceID() { return IID_IVertexSmearer; }
	7: // Actual operator function
	8: virtual StatusCode smear( MyAxVertex* ) = 0;
	9: };

	Listing 11.3 Example of a concrete tool minimal implementation header file
	1: #include "GaudiKernel/AlgTool.h"
	2: class VertexSmearer : public AlgTool, virtual public IVertexSmearer {
	3: public:
	4: // Constructor
	5: VertexSmearer( const std::string& type, const std::string& name, const IInterface* parent);
	6: // Standard Destructor
	7: virtual ~VertexSmearer() { }
	8: // specific method of this tool
	9: StatusCode smear( MyAxVertex* pvertex );

	Listing 11.4 Example of a concrete tool minimal implementation file
	1: #include "GaudiKernel/ToolFactory.h"
	2: // Static factory for instantiation of algtool objects
	3: static ToolFactory<VertexSmearer> s_factory;
	4: const IToolFactory& VertexSmearerFactory = s_factory;
	5:
	6: // Standard Constructor
	7: VertexSmearer::VertexSmearer(const std::string& type, const std::string& name, const IInterface* parent) : AlgTool( type, name, parent ) {
	8:
	9: // Locate service needed by the specific tool
	10: m_randSvc = 0;
	11: if( serviceLocator() ) {
	12: StatusCode sc=StatusCode::FAILURE;
	13: sc = serviceLocator()->service( "RndmGenSvc", m_randSvc, true );
	14: }
	15: // Declare additional interface
	16: declareInterface<IVertexSmearer>(this);
	17:
	18: // Declare properties of the specific tool
	19: declareProperty("dxVtx", m_dxVtx = 9 * micrometer);
	20: declareProperty("dyVtx", m_dyVtx = 9 * micrometer);
	21: declareProperty("dzVtx", m_dzVtx = 38 * micrometer);
	22: }
	23: // Implement the specific method ....
	24: StatusCode VertexSmearer::smear( MyAxVertex* pvertex ) {...}

	1. Define the specific interface (inheriting from the IAlgTool interface).
	2. Derive the tool class from the AlgTool base class
	3. Provide the constructor
	4. Declare the additional interface in the constructor.
	5. Implement the factory adding the lines of code shown in Listing 11.4
	6. Implement the specific interface methods.




	11.3 The ToolSvc
	Figure 11.1 ToolSvc design diagram
	11.3.1 Retrieval of tools via the IToolSvc interface
	Listing 11.5 The IToolSvc interface methods
	1: virtual StatusCode retrieve(const std::string& type, const IID&, IAlgTool*& tool, const IInterface* parent=0, bool createIf=true ) = 0;
	2: virtual StatusCode retrieve(const std::string& type, const IID&, const std::string& name, IAlgTool*& tool, const IInterface* parent=0, bool createIf=true ) = 0;

	Listing 11.6 The IToolSvc template methods
	1: template <class T>
	2: StatusCode retrieveTool( const std::string& type, T*& tool, const IInterface* parent=0, bool createIf=true ) {...}
	3: template <class T>
	4: StatusCode retrieveTool( const std::string& type, const std::string& name, T*& tool, const IInterface* parent=0, bool createIf=true ) {...}

	Listing 11.7 Example of retrieval by an algortihm of a shared tool in line 4: and of a private tool in line 10:
	1: // Example of tool belonging to the ToolSvc and shared between
	2: // algorithms
	3: StatusCode sc;
	4: sc = toolsvc()->retrieveTool("AddFourMom", m_sum4p );
	5: if( sc.isFailure() ) {
	6: log << MSG::FATAL << " Unable to create AddFourMom tool" << endreq;
	7: return sc;
	8: }
	9: // Example of private tool
	10: sc = toolsvc()->retrieveTool("ImpactPar", m_ip, this );
	11: if( sc.isFailure() ) {
	12: log << MSG::FATAL << " Unable to create ImpactPar tool" << endreq;
	13: return sc;
	14: }



	11.4 GaudiTools
	11.4.1 Associators
	11.4.1.1 The IAssociator Interface
	Listing 11.8 Methods of the IAssociator Interface that must be implemented by concrete associators
	1: virtual StatusCode i_retrieveDirect( ContaineData Objectect* objFrom, ContaineData Objectect*& objTo, const CLID idFrom, const CLID idTo ) = 0;
	2: virtual StatusCode i_retrieveDirect( ContaineData Objectect* objFrom, std::vector<ContaineData Objectect*>& vObjTo, const CLID idFrom, const CLID idTo ) = 0;
	3: virtual StatusCode i_retrieveInverse( ContaineData Objectect* objFrom, ContaineData Objectect*& objTo, const CLID idFrom, const CLID idTo) = 0;
	4: virtual StatusCode i_retrieveInverse( ContaineData Objectect* objFrom, std::vector<ContaineData Objectect*>& vObjTo, const CLID idFrom, const CLID idTo) = 0;

	Listing 11.9 Template methods of the IAssociator interface
	1: template <class T1, class T2> StatusCode retrieveDirect( T1* from, T2*& to ) {...}
	2: template <class T1> StatusCode retrieveDirect( T1* from, std::vector<ContaineData Objectect*>& objVTo, const CLID idTo ) {...}
	3: template <class T1, class T2> StatusCode retrieveInverse( T1* from, T2*& to ) {...}
	4: template <class T1> StatusCode retrieveInverse( T1* from, std::vector<ContaineData Objectect*>& objVTo, const CLID idTo ) {...}


	11.4.1.2 The Associator base class
	Access to Event Data Service -
	Associator Properties -
	Inverse Association -
	Locally kept information -

	11.4.1.3 A concrete example
	Listing 11.10 Example of setting properties for an associator via jobOptions
	Listing 11.11 Checking if objects to be associated are of the correct type
	1: if ( idFrom != AxPartCandidate::classID() ){
	2: objTo = 0;
	3: return StatusCode::FAILURE;
	4: }
	5: if ( idTo != MCParticle::classID() ) {
	6: objTo = 0;
	7: return StatusCode::FAILURE;
	8: }

	Listing 11.12 Extracted code from the AsctExampleAlgorithm
	1: #include "GaudiTools/IAssociator.h"
	2: // Example of retrieving an associator
	3: IAssociator
	4: StatusCode sc = toolsvc()->retrieveTool("AxPart2MCParticleAsct", m_pAsct);
	5: if( sc.isFailure() ) {
	6: log << MSG::FATAL << "Unable to create Associator tool" << endreq;
	7: return sc;
	8: }
	9: // Example of retrieving inverse one-to-one information from an
	10: // associator
	11: SmartDataPtr<MCParticleVector> vmcparts (evt,"/MC/MCParticles");
	12: for( MCParticleVector::iterator itm = vmcparts->begin(); vmcparts->end() != itm; itm++) {
	13: AxPartCandidate* mptry = 0;
	14: StatusCode sc = m_pAsct->retrieveInverse( *itm, mptry );
	15: if( sc.isSuccess() ) {...}
	16: else {...}
	17: }
	18: // Example of retrieving direct one-to-many information from an
	19: // associator
	20: SmartDataPtr<AxPartCandidateVector> candidates(evt, "/Anal/AxPartCandidates");
	21: std::vector<ContaineData Objectect*> pptry;
	22: AxPartCandidate* itP = *(candidates->begin());
	23: StatusCode sa = m_pAsct->retrieveDirect(itP, pptry, MCParticle::classID());
	24: if( sa.isFailure() ) {...}
	25: else {
	26: for (std::vector<ContaineData Objectect*>::iterator it = pptry.begin(); pptry.end() != it; it++ ) {
	27: MCParticle* imc = dynamic_cast<MCParticle*>( *it );
	28: }
	29: }
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	Figure 12.1 Persistency conversion services in Gaudi

	12.3 Collaborators in the conversion process
	Figure 12.1 The classes (and interfaces) collaborating in the conversion process.

	12.4 The conversion process
	Figure 12.1 A trace of the creation of a new transient object.
	i. “Macroscopic” references appear as separate “leaves” in the data store. They have to be registered with a separate opaque address structure in the data directory of the object being converted. This must be done after the object was registe...
	ii. Internal references must be handled differently. There are two possibilities for resolving internal references:
	1. Load on demand. If the object the reference points to should only be loaded when accessed, the pointer must no longer be a raw C++ pointer, but rather a smart pointer object containing itself the information for later resolution of the ref...
	2. Filling of raw C++ pointers. This is only necessary if the object points to an object in another store, e.g. the detector data store, and should be avoided in classes foreseen to be made persistent. To resolve the reference a converter has...



	12.5 Converter implementation - general considerations
	Listing 12.1 An example converter class
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	14.1 Overview
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	14.3 Interfaces in Gaudi
	Listing 14.1 Example of an abstract interface (IService)
	1: // $Header: $
	2: #ifndef GAUDIKERNEL_ISERVICE_H
	3: #define GAUDIKERNEL_ISERVICE_H
	4:
	5: // Include files
	6: #include "GaudiKernel/IInterface.h"
	7: #include <string>
	8:
	9: // Declaration of the interface ID. (id, major, minor)
	10: static const InterfaceID IID_IService(2, 1, 0);
	11:
	12: /** @class IService IService.h GaudiKernel/IService.h
	13:
	14: General service interface definition
	15:
	16: @author Pere Mato
	17: */
	18: class IService : virtual public IInterface {
	19: public:
	20: /// Retrieve name of the service
	21: virtual const std::string& name() const = 0;
	22: /// Retrieve ID of the Service. Not really used.
	23: virtual const IID& type() const = 0;
	24: /// Initilize Service
	25: virtual StatusCode initialize() = 0;
	26: /// Finalize Service
	27: virtual StatusCode finalize() = 0;
	28: /// Retrieve interface ID
	29: static const InterfaceID& interfaceID() { return IID_IService; }
	30: };
	31:
	32: #endif // GAUDIKERNEL_ISERVICE_H

	14.3.1 Interface ID
	14.3.2 Query Interface
	Listing 14.2 Example usage of queryInterface to navigate between interfaces
	1: IMessageSvc* msgSvc();
	2: ...
	3: IProperty* msgProp;
	4: msgSvc()->queryInterface( IID_IProperty, (void**)&msgProp );
	5: std::string dfltLevel;
	6: StatusCode scl = msgProp->getProperty( "OutputLevel", dfltLevel );

	Listing 14.3 Example implementation of queryInterface()
	1: StatusCode DataSvc::queryInterface(const InterfaceID& riid,
	2: void** ppvInterface) {
	3: if ( IID_IDataProviderSvc.versionMatch(riid) ) {
	4: *ppvInterface = (IDataProviderSvc*)this;
	5: }
	6: else if ( IID_IDataManagerSvc.versionMatch(riid) ) {
	7: *ppvInterface = (IDataManagerSvc*)this;
	8: }
	9: else {
	10: return Service::queryInterface(riid, ppvInterface);
	11: }
	12: addRef();
	13: return SUCCESS;
	14: }
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	14.4.1.3 Loading Components
	Listing 14.6 The MyComponents_load.cpp file
	1. The argument of LOAD_FACTORY_ENTRIES is the name of the component library.

	14.4.1.4 CMT requirements file fragment to create a component library
	Listing 14.7 Creating a component library
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