

ATLAS

Athena

The ATLAS Common Framework

Version: 8

Issue: 0

Edition: 0

Status:

ID:

Date: 11 February 2004 (revision 18 March 2006)

European Laboratory for Particle Physics

Laboratoire Europ�en pour la Physique des Particules

CH-1211 Gen�ve 23 - Suisse

page 2

page 3

 Table of Contents Version/Issue: 8.0.0

Table of Contents

Chapter 1

Introduction

 . 9
1.1 Purpose of the document . 9
1.2 Athena and GAUDI . 9
1.2.1 Document organization . 10

1.3 Conventions . 10
1.3.1 Units . 10
1.3.2 Coding Conventions. 10
1.3.3 Naming Conventions . 10
1.3.4 Conventions of this document . 10

1.4 Release Notes. 11
1.5 Reporting Problems . 11
1.6 User Feedback . 11

Chapter 2

The framework architecture

. 13
2.1 Overview . 13
2.2 Why architecture? . 13
2.3 Data versus code . 15
2.4 Main components. 16
2.5 Controlling and Scheduling . 18
2.5.1 Application Bootstrapping . 18
2.5.2 Algorithm Scheduling . 19

Chapter 3

Writing algorithms

. 21
3.1 Overview . 21
3.2 Algorithm base class . 21
3.3 Derived algorithm classes . 24
3.3.1 Creation (and algorithm factories) . 24
3.3.2 Declaring properties . 25
3.3.3 Implementing IAlgorithm . 26

3.4 Nesting algorithms. 28
3.5 Algorithm sequences, branches and filters . 29
3.5.1 Filtering example . 30
3.5.2 Sequence branching . 30

Chapter 4

Scripting

 . 33

page 4

4.1 Disclaimer. 33

4.2 Overview. 33

4.3 Python overview . 34

4.4 Using Python scripting . 35

4.4.1 Using Python to drive Athena. 35

4.4.2 Using a Python script for configuration and control. 36

4.4.3 Using a job options text file for configuration with a Python interactive shell
37

4.5 Prototype functionality . 37

4.6 Property manipulation . 38

4.7 Synchronization between Python and Athena . 39

4.8 Controlling job execution . 40

Chapter 5

StoreGate - the event data access model

. 43

5.1 Overview. 43

5.2 The Data Model Architecture . 43

5.2.1 Data Objects and Algorithms . 43

5.2.2 StoreGate: the Atlas Transient Data Store . 44

5.3 Data Objects . 45

5.3.1 Using Containers as Data Objects. 46

5.3.2 Describing Data Objects to SG . 47

5.3.3 Data Object Creation and Ownership of Data Objects 48

5.4 Accessing Data Objects . 48

5.4.1 Recording a Data Object . 49

5.4.2 Retrieving a Data Object. 50

5.5 Using DataLinks to persistify references . 52

5.5.1 Creating a DataLink to a data object. 53

5.5.2 Creating a Link to an Element of a Container . 54

5.5.3 ElementLinks to other Containers. 54

5.5.4 Accessing DataLinks. 55

5.5.5 DataLinks Persistency. 55

5.6 History . 56

Chapter 6

Data dictionary

 . 57

6.1 Overview. 57

6.2 How to write/read data via POOL . 57

6.2.1 Creating a data dictionary filler . 59

6.2.2 generating converters . 64

6.2.3 writing custom converters . 65

6.2.4 setting up the joboptions . 73

6.2.5 caveats, problems and work-arounds . 74

page 5

 Table of Contents Version/Issue: 8.0.0

Chapter 7

Detector Description

 . 77

7.1 Overview . 77

7.2 About the Geometry Kernel Classes.. 77

7.3 Examples . 78

7.3.1 Example 1: Getting the data into the transient represention. 79

7.3.2 Example 2: Getting the data out of the transient representation. 82

7.4 An Overview of the Geometry Kernel. 83

7.4.1 The Detector Store Service and Detector Managers 83

7.4.2 Material Geometry . 84

7.4.3 Materials. 85

7.4.4 Detector Specific Geometrical Services. 91

7.4.5 Alignment. 92

7.4.6 On Memory Use. 93

Chapter 8

Histogram facilities

 . 95

8.1 Overview . 95

Chapter 9

N-tuple and Event Collection facilities

. 97

9.1 Overview . 97

Chapter 10

Framework services

. 99

10.1 Overview . 99

10.2 Requesting and accessing services . 99

10.3 The Job Options Service . 101

10.3.1 Algorithm, Tool and Service Properties . 101

10.3.2 Accessing and modifiying properties. 104

10.3.3 Job options file format . 104

10.4 The Standard Message Service . 108

10.4.1 The MsgStream utility . 108

10.5 The Particle Properties Service . 110

10.5.1 Initialising and Accessing the Service . 111

10.5.2 Service Properties . 111

10.5.3 Service Interface . 111

10.5.4 Examples . 113

10.6 The Chrono & Stat service . 113

10.6.1 Code profiling . 114

10.6.2 Statistical monitoring . 115

10.6.3 Chrono and Stat helper classes. 115

10.6.4 Performance considerations . 116

page 6

10.7 The Auditor Service . 116
10.7.1 Enabling the Auditor Service and specifying the enabled Auditors 117
10.7.2 Overriding the default Algorithm monitoring. 117
10.7.3 Implementing new Auditors . 118

10.8 The Random Numbers Service . 118
10.9 The Incident Service . 121
10.9.1 Known Incidents . 123

10.10The Gaudi Introspection Service . 123
10.11Developing new services . 124
10.11.1 The Service base class. 124
10.11.2 Implementation details . 125

Chapter 11

Tools and ToolSvc

. 129
11.1 Overview. 129
11.2 Tools and Services . 129
11.2.1 ÒPrivateÓ and ÒSharedÓ Tools . 130
11.2.2 The Tool classes . 130

11.3 The ToolSvc . 135
11.3.1 Retrieval of tools via the

IToolSvc

 interface . 136
11.4 GaudiTools . 137
11.4.1 Associators . 138

Chapter 12

Converters

. 143
12.1 Overview. 143
12.2 Persistency converters . 143
12.3 Collaborators in the conversion process . 144
12.4 The conversion process. 146
12.5 Converter implementation - general considerations . 149
12.6 Storing Data using the ROOT I/O Engine . 149
12.7 The Conversion from Transient Objects to ROOT Objects 150
12.8 Storing Data using other I/O Engines . 151

Chapter 13

Visualization

 . 153
13.1 Overview. 153

Chapter 14

Framework packages, interfaces and libraries

 . 155
14.1 Overview. 155
14.2 Athena Package Structure. 155
14.2.1 Packaging Guidelines . 155

14.3 Interfaces in Gaudi . 156

page 7

 Table of Contents Version/Issue: 8.0.0

14.3.1 Interface ID . 157

14.3.2 Query Interface . 158

14.4 Libraries in Athena . 159

14.4.1 Component libraries . 159

14.4.2 Linker (or installed) libraries . 163

14.4.3 Dual use libraries . 164

14.4.4 Linking FORTRAN code. 165

Chapter 15

Analysis utilities

. 167

15.1 Overview . 167

15.2 CLHEP. 167

15.3 ROOT . 167

Appendix A

Options for standard components

 . 169

A.1 Obsolete options . 175

Appendix B

Design considerations

 . 177

B.1 Generalities . 177

B.2 Designing within the Framework . 178

B.3 Analysis Phase . 179

B.4 Design Phase . 180

B.4.1 Defining Algorithms . 180

B.4.2 Defining Data Objects . 180

B.4.3 Mathematics and other utilities . 182

Appendix C

Job Options Grammar

 . 183

C.1 The EBNF grammar of the Job Options files . 183

C.2 Job Options Error Codes and Error Messages . 186

Appendix D

The ATLAS Development Model

. 189

D.1 Overview . 189

D.2 Packages . 189

D.3 Releases . 190

D.4 CMT - the Configuration Management Tool. 191

D.5 Establishing a login environment . 191

D.6 Setting up a test release . 191

Appendix E

page 8

Package and Directory Structure

 . 193
E.1 Subsystem Package Organization. 193
E.2 Utilities Package Directory Structure . 194
E.3 Algorithm and Service Package Directory Structure . 194
E.4 Data Package Directory Structure. 195

Appendix F

Standard ATLAS Patterns and Variables

 . 197
F.1 Overview. 197
F.2 Platform Environment Variables . 197
F.3 Patterns controlling include paths. 198
F.4 Patterns controlling library creation . 199
F.5 Patterns controlling linker options . 199
F.6 Patterns for establishing a run-time environment . 199

Appendix G

References

 . 203

page 9

Chapter 1 Introduction Version/Issue: 8.0.0

Chapter 1

Introduction

1.1 Purpose of the document

This document is intended for developers of the Athena control framework. Athena is based upon the

GAUDI architecture that was originally developed by LHCb, but which is now a joint development

project. This document, together with other information about Athena, is available online at:

http://web1.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture

This version of the Athena Developers Guide corresponds to Athena release 7.5.0. This is based upon

ATLAS GAUDI version 0.12.1.5, which itself is based upon GAUDI version 12.

1.2 Athena and GAUDI

As mentioned above Athena is a control framework that represents a concrete implementation of an

underlying architecture. The architecture describes the abstractions or components and how they

interact with each other. The architecture underlying Athena is the GAUDI architecture originally

developed by LHCb. This architecture has been extended through collaboration with ATLAS, and an

experiment neutral or kernel implementation, also called GAUDI, has been created. Athena is then the

sum of this kernel framework, together with ATLAS-specific enhancements. The latter include the

event data model and event generator framework.

The collaboration between LHCb and ATLAS is in the process of being extended to allow other

experiments to also contribute new architectural concepts and concrete implementations to the kernel

GAUDI framework. It is expected that implementation developed originally for a particular experiment

will be adopted as being generic and will be migrated into the kernel. This has already happened with,

page 10

for example, the concepts of auditors, the sequencer and the ROOT histogram and ntuple persistency

service.

For the remainder of this document the name

Athena

 is used to refer to the framework and the name

GAUDI

 is used to refer to the architecture upon which this framework is based.

1.2.1 Document organization

The document is organized as follows:

1.3 Conventions

1.3.1 Units

This section is blank for now.

1.3.2 Coding Conventions

This section is blank for now.

1.3.3 Naming Conventions

This section is blank for now.

1.3.4 Conventions of this document

Angle brackets

 are used in two contexts. To avoid confusion we outline the difference with an

example.

The definition of a templated class uses angle brackets. These are required by the C++ syntax, so in the

instantiation of a templated class the angle brackets are retained:

AlgFactory<UserDefinedAlgorithm> s_factory;

page 11

Chapter 1 Introduction Version/Issue: 8.0.0

This is to be contrasted with the use of angle brackets to denote ÒreplacementÓ such as in the

specification of the string:

which implies that the string should look like:

Hopefully what is intended will be clear from the context.

1.4 Release Notes

Although this document is kept as up to date as possible, Athena users should refer to the release notes

that accompany each ATLAS software release for any information that is specific to that release. The

release notes are kept in the

offline/Control/ReleaseNotes.txt

 file.

1.5 Reporting Problems

ATLAS uses the Savannah portal for reporting and tracking of problems. The URL for the Athena

project is

http://savannah.cern.ch/projects/athena

.

1.6 User Feedback

Feedback on this Developers Guide, or any other aspects of the documentation for Athena, should be

sent to the ATLAS Architecture mailing list at

atlas-sw-architecture@atlas-lb.cern.ch.

Ò<concreteAlgorithmType>/<algorithmName>Ó

ÒEmptyAlgorithm/EmptyÓ

page 12

page 13

Chapter 2 The framework architecture Version/Issue: 8.0.0

Chapter 2

The framework architecture

2.1 Overview

In this chapter we outline some of the main features of the Athena architecture. A (more) complete view

of the architecture, along with a discussion of the main design choices and the reasons for these choices

may be found in references [6] and [9].

2.2 Why architecture?

The basic ÒrequirementÓ of the physicists is a set of programs for doing event simulation,

reconstruction, visualisation, etc. and a set of tools which facilitate the writing of analysis programs.

Additionally a physicist wants something that is easy to use and (though he or she may claim otherwise)

is extremely flexible. The purpose of the Athena application framework is to provide software which

fulfils these requirements, but which additionally addresses a larger set of requirements, including the

use of some of the software online.

If the software is to be easy to use it must require a limited amount of learning on the part of the user. In

particular, once learned there should be no need to re-learn just because technology has moved on (you

do not need to re-take your licence every time you buy a new car). Thus one of the principal design

goals was to insulate users (physicist developers and physicist analysists) from irrelevant details such as

what software libraries we use for data I/O, or for graphics. We have done this by developing an

architecture. An architecture consists of the specification of a number of components and their

interactions with each other. A component is a ÒblockÓ of software which has a well specified interface

and functionality. An interface is a collection of methods along with a statement of what each method

actually does, i.e. its functionality.

page 14

The main components of the Athena software architecture can be seen in the object diagram shown in

Figure 2.1. Object diagrams are very illustrative for explaining how a system is decomposed. They

represent a hypothetical snapshot of the state of the system, showing the objects (in our case component

instances) and their relationships in terms of ownership and usage. They do not illustrate the structure,

i.e. class hierarchy, of the software.

It is intended that almost all software written by physicists, whether for event generation, reconstruction

or analysis, will be in the form of specialisations of a few specific components. Here, specialisation

means taking a standard component and adding to its functionality while keeping the interface the

same. Within the application framework this is done by deriving new classes from one of the base

classes:

¥ DataObject

¥ Algorithm

¥ Converter

In this chapter we will briefly consider the first two of these components and in particular the subject of

the ÒseparationÓ of data and algorithms. They will be covered in more depth in chapters 3 and 7. The

third base class, Converter, exists more for technical necessity than anything else and will be discussed

in Chapter 12. Following this we give a brief outline of the main components that a physicist developer

will come into contact with.

Figure 2.1

Gaudi Architecture Object Diagram

Converter

Algorithm

Event Data

Service

Persistency

Service
Data

Files

AlgorithmAlgorithm

Transient

Event

Store

Detec. Data

Service

Persistency

Service
Data

Files

Transient

Detector

Store

Message

Service

JobOptions

Service

Particle Prop.

Service

Other

Services Histogram

Service

Persistency

Service
Data

Files

Transient

Histogram

Store

Application

Manager
Converter

ConverterEvent

Selector

page 15

Chapter 2 The framework architecture Version/Issue: 8.0.0

2.3 Data versus code

Broadly speaking, tasks such as physics analysis and event reconstruction consist of the manipulation

of mathematical or physical quantities: points, vectors, matrices, hits, momenta, etc., by algorithms

which are generally specified in terms of equations and natural language. The mapping of this type of

task into a programming language such as FORTRAN is very natural, since there is a very clear

distinction between ÒdataÓ and ÒcodeÓ. Data consists of variables such as:

 integer n

 real p(3)

and code which may consist of a simple statement or a set of statements collected together into a

function or procedure:

 real function innerProduct(p1, p2)

 real p1(3),p2(3)

 innerProduct = p1(1)*p2(1) + p1(2)*p2(2) + p1(3)*p2(3)

 end

Thus the physical and mathematical quantities map to data and the algorithms map to a collection of

functions.

A priori, we see no reason why moving to a language which supports the idea of objects, such as C++,

should change the way we think of doing physics analysis. Thus the idea of having essentially

mathematical objects such as vectors, points etc. and these being distinct from the more complex beasts

which manipulate them, e.g. fitting algorithms etc. is still valid. This is the reason why the Athena

application framework makes a clear distinction between ÒdataÓ objects and ÒalgorithmÓ objects.

Anything which has as its origin a concept such as hit, point, vector, trajectory, i.e. a clear

Òquantity-likeÓ entity should be implemented by deriving a class from the

DataObject

 base class.

On the other hand anything which is essentially a ÒprocedureÓ, i.e. a set of rules for performing

transformations on more data-like objects, or for creating new data-like objects should be designed as a

class derived from the

Algorithm

 base class.

Further more you should not have objects derived from

DataObject

 performing long complex

algorithmic procedures. The intention is that these objects are ÒsmallÓ.

Tracks which fit themselves are of course possible: you could have a constructor which took a list of

hits as a parameter; but they are silly. Every track object would now have to contain all of the

parameters used to perform the track fit, making it far from a simple object. Track-fitting is an

algorithmic procedure; a track is probably best represented by a point and a vector, or perhaps a set of

points and vectors. They are different.

page 16

2.4 Main components

The principle functionality of an algorithm is to take input data, manipulate it and produce new output

data. Figure 2.1 shows how a concrete algorithm object interacts with the rest of the application

framework to achieve this.

The figure shows the four main services that algorithm objects use:

¥ The event data store

¥ The detector data store

¥ The histogram service

¥ The message service

The particle property service is an example of additional services that are available to an algorithm. The

job options service (see Chapter 10) is used by the

Algorithm

 base class, but is not usually explicitly

seen by a concrete algorithm.

Each of these services is provided by a component and the use of these components is via an interface.

The interface used by algorithm objects is shown in the figure, e.g. for both the event data and detector

data stores it is the

IDataProviderSvc

 interface. In general a component implements more than

one interface. For example the event data store implements another interface:

IDataManagerSvc

which is used by the application manager to clear the store before a new event is read in.

An algorithmÕs access to data, whether the data is coming from or going to a persistent store or whether

it is coming from or going to another algorithm is always via one of the data store components. The

IDataProviderSvc

 interface allows algorithms to access data in the store and to add new data to

the store. It is discussed further in Chapter 7 where we consider the data store components in more

detail.

Figure 2.1

The main components of the framework as seen by an algorithm object

ConcreteAlgorithm

EventDataSvc
IDataProviderSvc

IDataProviderSvc

IHistogramSvc

IMessageSvc

IProperty

ObjectA ObjectB

IAlgorithm

DetectorDataSvc

HistogramSvc

MessageSvc

ParticlePropertySvc
IParticlePropertySvc

ApplicationMgr

ISvcLocator

page 17

Chapter 2 The framework architecture Version/Issue: 8.0.0

The histogram service is another type of data store intended for the storage of histograms and other

ÒstatisticalÓ objects, i.e. data objects with a lifetime of longer than a single event. Access is via the

IHistogramSvc which is an extension to the IDataProviderSvc interface, and is discussed in

Chapter 8. The n-tuple service is similar, with access via the INtupleSvc extension to the
IDataProviderSvc interface, as discussed in Chapter 9.

In general, an algorithm will be configurable: It will require certain parameters, such as cut-offs, upper

limits on the number of iterations, convergence criteria, etc., to be initialised before the algorithm may

be executed. These parameters may be specified at run time via the job options mechanism. This is

done by the job options service. Though it is not explicitly shown in the figure this component makes

use of the IP roperty interface which is implemented by the Algorithm base class.

During its execution an algorithm may wish to make reports on its progress or on errors that occur. All

communication with the outside world should go through the message service component via the

IMessageSvc interface. Use of this interface is discussed in Chapter 10.

As mentioned above, by virtue of its derivation from the Algorithm base class, any concrete

algorithm class implements the IAl gorithm and IProperty interfaces, except for the three

methods initialize() , execute() , and finalize() which must be explicitly implemented

by the concrete algorithm. IAlgorithm is used by the application manager to control top-level

algorithms. IProperty is usually used only by the job options service.

The figure also shows that a concrete algorithm may make use of additional objects internally to aid it

in its function. These private objects do not need to inherit from any particular base class so long as they

are only used internally. These objects are under the complete control of the algorithm object itself and

so care is required to avoid memory leaks etc.

We have used the terms ÒinterfaceÓ and ÒimplementsÓ quite freely above. Let us be more explicit about

what we mean. We use the term interface to describe a pure virtual C++ class, i.e. a class with no data

members, and no implementation of the methods that it declares. For example:

is a pure abstract class or interface. We say that a class implements such an interface if it is derived from

it, for example:

A component which implements more than one interface does so via multiple inheritance, however,

since the interfaces are pure abstract classes the usual problems associated with multiple inheritance do

not occur. These interfaces are identified by a unique number which is available via a global constant of

class PureAbstractClass {

 virtual method1() = 0;

 virtual method2() = 0;

}

class ConcreteComponent: public PureAbstractClass {

 method1() { }

 method2() { }

}

page 18

the form: IID_Int erfaceType , such as for example IID_IDataProviderSvc . Interface

identifiers are discussed in detail in Chapter 14.

Within the framework every component, e.g. services and algorithms, has two qualities:

¥ A concrete component class, e.g. TrackFinderAlgorithm or MessageSvc.

¥ Its name, e.g. Ò KalmanFitAlgorithmÓ or Ò MessageServiceÓ.

2.5 Controlling and Scheduling

2.5.1 Application Bootstrapping

The application is bootstrapped by creating an instance of the ApplicationMgr component. The

ApplicationMgr is in charge of creating an initializing a minimal set of basic and essential services

before control is given to specialized scheduling services. These services are shown in Figure 2.1. The

EventLoopMgr is in charge controlling the main physics event1 loop and scheduling the top algorithms.

There will be a number of more or less specialized implementations of EventLoopMgr which will

perform the different actions depending on the running environment, and experiment specific policies

(clearing stores, saving histograms, etc.). There exists the possibility to give the full control of the

application to a component implementing the IRunable interface. This is needed for interactive

applications such as event display, interactive analysis, etc. The Runable component can interact

directly with the EventLoopMgr for triggering the processing of the next physics event.

The essential services that the ApplicationMgr need to instantiate and initialize are the MessageSvc and

JobOptionsSvc.

1. We state physics event to differentiate from what is called generally an event in computing.

Figure 2.1 Control and Scheduling collaboration

EventLoopSvcEventLoopSvc

ApplicationMgrApplicationMgr

IAppMgrUI
EventLoopMgrEventLoopMgr

IRunable

RunableRunable

EventLoopSvcEventLoopSvcAlgorithm1Algorithm1
EventLoopSvcEventLoopSvcEventLoopSvcEventLoopSvcMessageSvcMessageSvc

IAlgorithm

TopAlg

property

EventLoop

property

Runable

property

ExtSvc

property

IService

page 19

Chapter 2 The framework architecture Version/Issue: 8.0.0

2.5.2 Algorithm Scheduling

The Gaudi architecture foresees explicit invocation of algorithms by the framework or by other

algorithms. This latter possibility allows for a hierarchical organization of algorithms, for example, a

high level algorithm invoking a number of sub-algorithms.

The EventLoopMgr component is in charge of initializing, finalizing and executing the set of

Algorithms that have been declared with the TopAlg property. These Algorithms are executed

unconditionally in the order they have been declared. This vary basic scheduling is insufficient for

many use cases (event filtering, conditional execution, etc.). Therefore, a number of Algorithms have

been introduced that perform more sophisticated scheduling and can be configured by some properties.

Examples are: Sequencers, Prescalers, etc. and the list can be easily extended. See Section 3 for more

details on these generic high level Algorithms.

page 20

page 21

Chapter 3 Writing algorithms Version/Issue: 8.0.0

Chapter 3

Writing algorithms

3.1 Overview

As mentioned previously the framework makes use of the inheritance mechanism for specialising the

Algorithm component. In other words, a concrete algorithm class must inherit from (Òbe derived

fromÓ in C++ parlance, ÒextendÓ in Java) the Algorithm base class.

In this chapter we first look at the base class itself. We then discuss what is involved in creating

concrete algorithms: specifically how to declare properties, what to put into the methods of the

IAlgorithm interface, the use of private objects and how to nest algorithms. Finally we look at how

to set up sequences of algorithms and how to control processing through the use of branches and filters.

3.2 Algorithm base class

Since a concrete algorithm object is-an Algorithm object it may use all of the public and protected

methods of the Algorithm base class. The base class has no protected or public data members, so in

fact, these are the only methods that are available. Most of these methods are provided solely to make

the implementation of derived algorithms easier. The base class has two main responsibilities: the

initialization of certain internal pointers and the management of the properties of derived algorithm

classes.

A part of the Algorithm base class definition is shown in Listing 3.1. Include directives, forward

declarations and private member variables have all been suppressed. It declares a constructor and

destructor; some methods of the IAlgorithm interface; several accessors to services that a concrete

page 22

algorithm will almost certainly require; a method to create a sub algorithm, the two methods of the

IProperty interface; and a whole series of methods for declaring properties.

Listing 3.1 The definition of the Algorithm base class.

1: class Algorithm : virtual public IAlgorithm,

 virtual public IProperty {

2: public:

3: // Constructor and destructor

4: Algorithm(const std::string& name, ISvcLocator *svcloc);

5: virtual ~Algorithm();

6:

7: // IAlgorithm interface only partially implemented

8: StatusCode sysInitialize();

9: StatusCode sysExecute();

10: StatusCode sysFinalize();

11: StatusCode beginRun();

12: StatusCode endRun();

13: const std::string& name() const;

14:

15: virtual bool isExecuted() const;

16: virtual StatusCode setExecuted(bool state);

17: virtual StatusCode resetExecuted();

18: virtual bool isEnabled() const;

19: virtual bool filterPassed() const;

20: virtual StatusCode setFilterPassed(bool state);

21:

22: // Service accessors

23: template<class T> StatusCode service(const std::string& name, T*& svc,

bool createIf = false);

24: void setOutputLevel(int level);

25: IMessageSvc* msgSvc() const;

26: IAuditorSvc* auditorSvc() const;

27: IDataProviderSvc* eventSvc() const;

28: IConversionSvc* eventCnvSvc() const;

29: IDataProviderSvc* detSvc() const;

30: IConversionSvc* detCnvSvc() const;

31: IHistogramSvc* histoSvc() const;

32: INtupleSvc* ntupleSvc() const;

33: IChronoStatSvc* chronoSvc() const;

34: IRndmGenSvc* randSvc() const;

35: IToolSvc* toolSvc() const;

36: ISvcLocator* serviceLocator() const;

37:

38: StatusCode createSubAlgorithm(const std::string& type,

 const std::string& name, Algorithm*& pSubAlg);

39: std::vector<Algorithm*>* subAlgorithms() const;

40:

page 23

Chapter 3 Writing algorithms Version/Issue: 8.0.0

Constructor and Destructor The base class has a single constructor which takes two arguments: The

first is the name that will identify the algorithm object being instantiated and the second is a pointer to

one of the interfaces implemented by the application manager: ISvcLocator. This interface may be

used to request special services that an algorithm may wish to use, but which are not available via the

standard accessor methods (below).

The IAlgorithm interface The base class only partially implements this interface: the three pure

virtual methods initialize(), execute() and finalize() must be implemented by a

derived algorithm: these are where the algorithm does its useful work and are discussed in more detail

in section 3.3. The base class provides default implementations of the methods beginRun() and

endRun(), and the accessor name() which returns the algorithmÕs identifying name. The methods

sysInitialize(), sysFinalize(), sysExecute() are used internally by the framework;

they are not virtual and may not be overridden.

Service accessor methods Lines 25 to 35 declare accessor methods which return pointers to key

service interfaces. These methods are available for use only after the Algorithm base class has been

initialized, i.e. they may not be used from within a concrete algorithm constructor, but may be used

from within the initialize() method (see Section 3.3.3). The services and interface types to

41: // IProperty interface

42: virtual StatusCode setProperty(const Property& p);

43: virtual StatusCode setProperty(std::istream s&);

44:

45: virtual StatusCode setProperty(const std::string& n,

 const std::string& v);

46: virtual StatusCode getProperty(Property* p) const;

47: const Property& getProperty(const std::string& name) const;

48: virtual StatusCode getProperty(const std::string& n,

 std::string& v) const;

49: const std::vector<Property*>& getProperties() const;StatusCode

setProperties();

50: template <class T>

 StatusCode declareProperty(const std::string& name, T& property);

51: StatusCode declareRemoteProperty(const std::string& name,

 IProperty* rsvc, const std::string& rname = "") const;

52: /// Methods for IInterface

53: unsigned long addRef();

54: unsigned long release();

55: StatusCode queryInterface(const IID& riid, void**);

56:

57: protected:

58: bool isInitialized() const;

59: void setInitialized();

60: bool isFinalized() const;

61: void setFinalized();

62: private:

63: // Data members not shown

64: Algorithm(const Algorithm& a); // NO COPY ALLOWED

65: Algorithm& operator=(const Algorithm& rhs); // NO ASSIGNMENT ALLOWED};

Listing 3.1 The definition of the Algorithm base class.

page 24

which they point are self explanatory. Services may be located by name using the templated

service() function in line 23 or by using the serviceLocator() accessor method on line 36, as

described in Section 10.2. Line 24 declares a facility to modify the message output level from within

the code (the message service is described in Section 10.4).

Creation of sub algorithms The methods on lines 38 to 39 are intended to be used by a derived class

to manage sub-algorithms, as discussed in section 3.4.

Declaration and setting of properties A concrete algorithm must declare its properties to the

framework using the templated declareProperty method (line 50), as discussed in Section 3.3.2

and Section 10.3.1. The Algorithm base class then uses the setProperties() method (line 49) to

tell the framework to set these properties to the values defined in the job options file. The methods in

lines 42 to 49 can later be used to access and modify the values of specific properties, as explained in

Section 10.3.2.

Filtering The methods in lines 14 to 19 are used by sequencers and filters to access the state of the

algorithm, as discussed in Section 3.5.

3.3 Derived algorithm classes

In order for an algorithm object to do anything useful it must be specialised, i.e. it must extend (inherit

from, be derived from) the Algorithm base class. In general it will be necessary to implement the

methods of the IAlgorithm interface, and declare the algorithmÕs properties to the property

management machinery of the Algorithm base class. Additionally there is one non-obvious technical

matter to cover, namely algorithm factories.

3.3.1 Creation (and algorithm factories)

A concrete algorithm class must specify a single constructor with the same parameter signature as the

constructor of the base class.

In addition to this, a concrete algorithm factory must be provided. This is a technical matter which

permits the application manager to create new algorithm objects without having to include all of the

concrete algorithm header files. From the point of view of an algorithm developer it implies adding

three lines into the implementation file, of the form:

where Ò ConcreteAlgorithmÓ should be replaced by the name of the derived algorithm class (see

for example lines 10 and 11 in Listing 3.2 below).

#include "GaudiKernel/AlgFactory.h"

...

static const AlgFactory<ConcreteAlgorithm> s_factory;

const IAlgFactory& ConcreteAlgorithmFactory = s_factory;

page 25

Chapter 3 Writing algorithms Version/Issue: 8.0.0

3.3.2 Declaring properties

In general, a concrete algorithm class will have several data members which are used in the execution

of the algorithm proper. These data members should of course be initialized in the constructor, but if

this was the only mechanism available to set their value it would be necessary to recompile the code

every time you wanted to run with different settings. In order to avoid this, the framework provides a

mechanism for setting the values of member variables at run time.

The mechanism comes in two parts: the declaration of properties and the setting of their values. As an

example consider the class TriggerDecision in Listing 3.2 which has a number of variables whose

value we would like to set at run time.

The default values for the variables are set within the constructor (within an initialiser list). To declare

them as properties it suffices to call the declareProperty() method. This method is templated to

take an std::string as the first parameter and a variety of different types for the second parameter.

The first parameter is the name by which this member variable shall be referred to, and the second

parameter is a reference to the member variable itself.

In the example we associate the name Ò PassAllModeÓ to the member variable m_passAllMode,

and the name Ò MuonCandidateCutÓ to m_muonCandidateCut. The first is of type boolean and

the second an integer. If the job options service (described in Section 10.3 on page 101) finds an option

in the job options file belonging to this algorithm and whose name matches one of the names associated

Listing 3.2 Declaring member variables as properties.

1: //------- In the header file --------------------------------------//

2: class TriggerDecision : public Algorithm {

3:

4: private:

5: bool m_passAllMode;

6: int m_muonCandidateCut;

7: std::vector m_ECALEnergyCuts;

8: }

9: //------- In the implementation file -------------------------------//

10: static const AlgFactory<TriggerDecision> s_factory;

11: const IAlgFactory& TriggerDecisionFactory = s_factory;

12:

13: TriggerDecision::TriggerDecision(std::string name, ISvcLocator *pSL) :

14: Algorithm(name, pSL), m_passAllMode(false), m_muonCandidateCut(0) {

15: m_ECALenergyCuts.push_back(0.0);

16: m_ECALenergyCuts.push_back(0.6);

17:

18: declareProperty(ÒPassAllModeÓ, m_passAllMode);

19: declareProperty(ÒMuonCandidateCutÓ, m_muonCandidateCut);

20: declareProperty(ÒECALEnergyCutsÓ, m_ECALEnergyCuts);

21: }

22:

23: StatusCode TriggerDecision::initialize() {

24: }

page 26

with a member variable, then that member variable will be set to the value specified in the job options

file.

3.3.3 Implementing IAlgorithm

Any concrete algorithm must implement the three pure virtual methods initialize(),

execute() and finalize() of the IAlgorithm interface. For a top level algorithm, i.e. one

controlled directly by the application manager, the methods are invoked as is described in section 2.6.

This dictates what it is useful to put into each of the methods.

Initialization Figure 3.1 shows an example trace of the initialization phase.In a standard job the

application manager will initialize all top level algorithms exactly once before reading any event data.

It does this by invoking the sysInitialize() method of each top-level algorithm in turn, in which

the framework takes care of setting up internal references to standard services and to set the algorithm

properties (using the mechanism described in Section 10.3.1 on page 101). At the end,

sysInitialize() calls the initialize() method, which can be used to do such things as

creating histograms, or creating sub-algorithms if required (sub-algorithms are discussed in

Section 3.4). If an algorithm fails to initialize it should return StatusCode::FAILURE. This will

cause the job to terminate.

Execution The guts of the algorithm class is in the execute() method. For top level algorithms this

will be called once per event for each algorithm object in the order in which they were declared to the

application manager. For sub-algorithms (Section 3.4) the control flow may be as you like: you may

call the execute() method once, many times or not at all.

Just because an algorithm derives from the Algorithm base class does not mean that it is limited to

using or overriding only the methods defined by the base class. In general, your code will be much

better structured (i.e. understandable, maintainable, etc.) if you do not, for example, implement the

execute() method as a single block of 100 lines, but instead define your own utility methods and

classes to better structure the code.

If an algorithm fails in some manner, e.g. a fit fails to converge, or its data is nonsense it should return

from the execute() method with StatusCode::FAILURE. This will cause the application

manager to stop processing events and end the job. This default behaviour can be modified by setting

the <myAlgorithm>.ErrorMax job option to something greater than 1. In this case a message will

be printed, but the job will continue as if there had been no error, and just increment an error count. The

job will only stop if the error count reaches the ErrorMax limit set in the job option.

The framework (the Algorithm base class) calls the execute() method within a try/catch clause. This

means that any exception not handled in the execution of an Algorithm will be caught at the level of

sysExecute() implemented in the base class. The behaviour on these exceptions is identical to that

described above for errors.

Finalization The finalize() method is called at the end of the job. It can be used to analyse

statistics, fit histograms, or whatever you like. Similarly to initialization, the framework invokes a

sysFinalize() method which in turn invokes the finalize() method of the algorithm and of

any sub-algorithms.

page 27

Chapter 3 Writing algorithms Version/Issue: 8.0.0

Optionally, the methods beginRun() and endRun() can also be implemented. These are called at

the beginning and the end of the event loop respectively.

Figure 3.1 Algorithm initialization.

Te

xt

Algorithm

SubAlgorithm

SubAlgorithm

sysInitialize

initialize

createSubAlgorithm

"create"

"create"

sysInitialize

initialize

initialize

sysInitialize

createSubAlgorithm

setProperties

setProperties

setProperties

page 28

Monitoring of the execution (e.g. cpu usage) of each Algorithm instance is performed by auditors under

control of the Auditor service (described in Section 10.7 on page 116). This monitoring can be turned

on or off with the boolean properties AuditInitialize, AuditExecute, AuditFinalize.

The following is a list of things to do when implementing an algorithm.

¥ Derive your algorithm from the Algorithm base class.

¥ Provide the appropriate constructor and the three methods initialize(), execute()

and finalize().

¥ Make sure you have implemented a factory by adding the magic two lines of code (see

Section 3.3.1).

3.4 Nesting algorithms

The application manager is responsible for initializing, executing once per event, and finalizing the set

of top level algorithms, i.e. the set of algorithms specified in the job options file. However such a

simple linear structure is very limiting. You may wish to execute some algorithms only for specific

types of event, or you may wish to ÒloopÓ over an algorithmÕ s execute method. Within the Athena

application framework the way to have such control is via the nesting of algorithms or through

algorithm sequences (described in section 5.5). A nested (or sub-) algorithm is one which is created by,

and thus belongs to and is controlled by, another algorithm (its parent) as opposed to the application

manager. In this section we discuss a number of points which are specific to sub-algorithms.

In the first place, the parent algorithm will need a member variable of type Algorithm* (see the code

fragment below) in which to store a pointer to the sub-algorithm.

The sub-algorithm itself is created by invoking the createSubAlgorithm() method of the

Algorithm base class. The parameters passed are the type of the algorithm, its name and a reference

to the pointer which will be set to point to the newly created sub-algorithm. Note that the name passed

into the createSubAlgorithm() method is the same name that should be used within the job

options file for specifying algorithm properties.

The algorithm type (i.e. class name) string is used by the application manager to decide which factory

should create the algorithm object.

Algorithm* m_pSubAlgorithm; // Pointer to the sub algorithm

 // Must be a member variable of the parent class

std::string type; // Type of sub algorithm

std::string name; // Name to be given to subAlgorithm

StatusCode sc; // Status code returned by the call

sc = createSubAlgorithm(type, name, Algorithm*& m_pSubAlgorithm);

page 29

Chapter 3 Writing algorithms Version/Issue: 8.0.0

The execution of the sub-algorithm is entirely the responsibility of the parent algorithm whereas the

initialize() and finalize() methods are invoked automatically by the framework as shown

in Figure 3.1. Similarly the properties of a sub-algorithm are also automatically set by the framework.

Note that the createSubAlgorithm() method returns a pointer to an Algorithm object, not an

IAlgorithm interface. This means that you have access to the methods of both the IAlgorithm

and IProperty interfaces, and consequently as well as being able to call execute() etc. you may

also change the properties of a sub-algorithm during the main event loop as explained in Section 10.3.1.

Note also that the vector of pointers to the sub-algorithms is available via the subAlgorithms()

method.

3.5 Algorithm sequences, branches and filters

A physics application may wish to execute different algorithms depending on the physics signature of

each event, which might be determined at run-time as a result of some reconstruction. This capability is

supported in Athena through sequences, branches and filters. A sequence is a list of Algorithms. Each

Algorithm may make a filter decision, based on some characteristics of the event, which can either

allow or bypass processing of the downstream algorithms in the sequence. The filter decision may also

cause a branch whereby a different downstream sequence of Algorithms will be executed for events

that pass the filter decision relative to those that fail it. Eventually the particular set of sequences, filters

and branches might be used to determine which of multiple output destinations each event is written to

(if at all). This capability is not yet implemented but is planned for a future release of Athena.

A Sequencer class is available in the GaudiAlg package which manages algorithm sequences

using filtering and branching protocols which are implemented in the Algorithm class itself. The list

of Algorithms in a Sequencer is specified through the Members property. Algorithms can call

setFilterPassed(true/false) during their execute() function. Algorithms in the

membership list downstream of one that sets this flag to false will not be executed, unless the

StopOverride property of the Sequencer has been set, or the filtering algorithm itself is of type

Sequencer and its BranchMembers property specifies a branch with downstream members. Please

note that, if a sub-algorithm is of type Sequencer, the parent algorithm must call the

resetExecuted() method of the sub-algorithm before calling the execute() method, otherwise

the sequence will only be executed once in the lifetime of the job!

An algorithm instance is executed only once per event, even if it appears in multiple sequences. It may

also be enabled or disabled, being enabled by default. This is controlled by the Enable property.

Enabling and disabling of algorithm instances is a capability that is designed for a future release of

Athena that will include an interactive scripting language.

The filter passed or failed logic for a particular Algorithm instance in a sequence may be inverted by

specifying the :invert optional flag in the Members list for the Sequencer in the job options file.

A Sequencer will report filter success if either of its main and branch member lists succeed. The two

cases may be differentiated using the Sequencer branchFilterPassed() boolean function. If

page 30

this is set true, then the branch filter was passed, otherwise both it and the main sequence indicated

failure.

The following examples illustrate the use of sequences with filtering and branching.

3.5.1 Filtering example

Listing 3.3 is an extract of the job options file of the AlgSequencer example: a Sequencer

instance is created (line 2) with two members (line 5); each member is itself a Sequencer,

implementing the sequences set up in lines 7 and 8, which consist of Prescaler, EventCounter

and HelloWorld algorithms. The StopOverride property of the TopSequence is set to true,

which causes both sequences to be executed, even if the first one indicates a filter failure.

The Prescaler and EventCounter classes are example algorithms distributed with the

GaudiAlg package. The Prescaler class acts as a filter, passing the fraction of events specified by

the PercentPass property (as a percentage). The EventCounter class just prints each event as it

is encountered, and summarizes at the end of job how many events were seen. Thus at the end of job,

the Counter1 instance will report seeing 50% of the events, while the Counter2 instance will

report seeing 10%.

Note the same instance of the HelloWorld class appears in both sequences. It will be executed in

Sequence1 if Prescaler1 passes the event. It will be executed in Sequence2 if Prescaler2

passes the event only if Prescaler1 failed it.

3.5.2 Sequence branching

Listing 3.4 illustrates the use of explicit branching. The BranchMembers property of the

Sequencer specifies some algorithms to be executed if the algorithm that is the first member of the

branch (which is common to both the main and branch membership lists) indicates a filter failure. In

Listing 3.3 Example job options using Sequencers demonstrating filtering

1: ApplicationMgr.DLLs += { "GaudiAlg" };

2: ApplicationMgr.TopAlg = { "Sequencer/TopSequence" };

3:

4: // Setup the next level sequencers and their members

5: TopSequence.Members = {"Sequencer/Sequence1", "Sequencer/Sequence2"};

6: TopSequence.StopOverride = true;

7: Sequence1.Members = {"Prescaler/Prescaler1", "HelloWorld",

"EventCounter/Counter1"};

8: Sequence2.Members = {"Prescaler/Prescaler2", "HelloWorld",

"EventCounter/Counter2"};

9:

10: Prescaler1.PercentPass = 50.;

11: Prescaler2.PercentPass = 10.;

page 31

Chapter 3 Writing algorithms Version/Issue: 8.0.0

this example the EventCounter instance Counter1 will report seeing 80% of the events, whereas

Counter2 will report seeing 20%.

Listing 3.5 illustrates the use of inverted logic. It achieves the same goal as the example in Listing 3.4

through use of two sequences with the same instance of a Prescaler filter, but where the second

sequence contains inverted logic for the single instance.

Listing 3.4 Example job options using Sequencers demonstrating branching

1: ApplicationMgr.DLLs += { "GaudiAlg" };

2: ApplicationMgr.TopAlg = { "Sequencer" };

3:

4: // Setup the next level sequencers and their members

5: Sequencer.Members = {"HelloWorld", "Prescaler",

"EventCounter/Counter1"};

6: Sequencer.BranchMembers = {"Prescaler", "EventCounter/Counter2"};

7:

8: Prescaler.PercentPass = 80.;

Listing 3.5 Example job options using Sequencers demonstrating inverted logic

1: ApplicationMgr.DLLs += { "GaudiAlg" };

2: ApplicationMgr.TopAlg = { "Sequencer/Seq1", "Sequencer/Seq2" };

3:

4: // Setup the next level sequencers and their members

5: Seq1.Members = {"HelloWorld", "Prescaler", "EventCounter/Counter1"};

6: Seq2.Members = {"HelloWorld", "Prescaler:invert",

"EventCounter/Counter2"};

7:

8: Prescaler.PercentPass = 80.;

page 32

page 33

Chapter 4 Scripting Version/Issue: 8.0.0

Chapter 4

Scripting

4.1 Disclaimer

Athena scripting support is available in experimental form. User

feedback is required to define the best approach and backwards

compatibility can not always be guaranteed for future versions of the

scripting facilities. Functionality is likely to change rapidly, so

users should check with the latest release notes for changes or new

functionality that might not be documented here.

4.2 Overview

A scripting service for Athena can be provided in several possible ways. In order to gain experience and

to find out what is best, the following is available in the prototype which uses Python[4] as the scripting

language and interactive interpreter:

¥ A Python script that starts and runs Athena. This way, Python is on par with Athena.

¥ A Python scripting service that is run from Athena, which is closer to the design philosophy of

Athena and the underlying GAUDI architecture.

For the second case, in the current implementation, the Python scripting can be started explicitly by

specifying it as the runable in your jobOptions.txt file or implicitly by giving the Athena executable a

Python script. Athena will then set the proper options for you.

From a technical point of view, more funtionality (read: code) can be put on the Python side in the first

case. In the second case, the scripting service will be more restricted and therefore easier replaced by a

page 34

different scripting language. However, considering that Athena is written in C++ and considering that

Python is a more portable and much more productive programming language, paying the upfront cost

of keeping the scripting service generic and as much functionality as possible in C++, is unlikely to pay

off in the long run. Unless, of course, Athena ends up supporting a myriad of scripting services.

Each of the methods, that were mentioned, of enabling Python scripting will be described in this

chapter. The Python scripting language itself will not be described in detail here, but only a brief

overview, sufficient to write scripts for Athena, will be presented.

4.3 Python overview

Python is a full-flexed, interpreted, open source, free programming langauge. In it youÕll find all the

programming elements you need, either in the language or in so-called Python modules (libraries). The

complete Python language is available for use, but the main parts that are needed for writing Athena

scripts are basic function calls, object creation, and member selection. Next to standard types such as

double and int, the string and list builtin types are often useful. Python allows you to use other builtin

collection classes like tuples and dictionaries, and you can define your own functions and classes.

Like many other scripting languages, Python uses dynamic typing (ie. you donÕt need to declare any of

your variables) and is rather generous with implicit conversions. Memory management is done for you.

Further, Python provides for many ways of exploring the run-time environment from the interpreter

prompt (which looks like Õ>>>Õ). Python is extensible by means of modules and interfaces very easily

to other popular programming languages.

When writing code, be aware that Python uses explicit indentation to indicate the scope of a block.

Blocks are not needed when you write simple Athena scripts, so just make sure that you start all

statements on the first character position. Python does not require an end-of-line nor end-of-statement

character, except when opening a block.

A basic function call is very similar to what you would find in other languages: funcname(arglist),

where "arglist" is a comma-separated list of arguments that are passed to the function. Objects are

created by calling the class name like a function and assigning the result to a variable: varname =

ClassName(arglist), where "arglist" is again a comma-separated list of arguments. Object members

are selected using the .operator (dot-operator, like in Java and C/C++). Members may include data

types (including objects) as well as functions.

Character strings are constructed by enclosing text in between single (Õ) or double (") quotes. Lists are

expandable arrays and are constructed by opening with a "[" followed by the comma-seperated

elements and closed by a "]" ("[]" is the empty list). Both strings and lists can be concatenated using the

+operator, or you can append to a string or list variable by using the +=operator.

Tips: use "#" to indicate the start of a comment. The comment extends to the end of the line, nest, and

can not be carried with a backslash. Use the "print" command to sent string output to the screen.

page 35

Chapter 4 Scripting Version/Issue: 8.0.0

For examples of actual Python code, please refer to the listings that follow or look at any of the .py files

in the Athena distribution. More information on Python is available on http://www.python.org, which

includes an up to date documentation of the available modules, and in many books on the language.

4.4 Using Python scripting

Three different mechanisms are available, in the current implementation of Athena, for enabling Python

scripting. The methods are:

1. Use the Ôathena.pyÕ script to run Athena/GAUDI from Python.

2. Replace, on the command line, the job options text file with a Python script.

3. Use a job options text file which hands control over to the Python shell once the initial

configuration has been established.

The 2nd and 3th method are very similar. The only difference being who specifies the Python scripting

service as the runable (Athena or the user). The first method is the most powerful and easiest to

develop. ItÕs also the recommend method, but it has a few issues when debugging, see below.

4.4.1 Using Python to drive Athena

The Ôathena.pyÕ script is fully backwards compatible with the Ôathena.exeÕ executable: you can

use it to drive Athena with a job options text file. Instead, or on top of that, you can also specify any

number of Python scripts that need to be executed, see Listing 4.1

Notes:

1. When the script is run with no arguments, it will look for the default jobOptions.txt file, start

up Athena, and if it found the default file, run it. If it didnÕt find any default file, it will present

you with the Python prompt and you can take it from there.

2. Same as [1], except that an explicit job options text file is specified. The file must exist (if it

doesnÕt, the script will exit) and Athena is run in batch mode.

3. Any number of Python scripts can be run, the file extension .py is used to detect Python

scripts. The scripts are executed in order and the first is expected to call ÔtheApp.setup(

MONTECARLO)Õ or ÔtheApp.setup(ZEBRA)Õ, depending on your needs, before

instantiating/using any services or algorithms. This minor wart is expected to go away in a

future installment

Listing 4.1 Using Python to drive Athena

athena.py [1]

athena.py myJobOptions.txt [2]

athena.py myScript.py [myScript2.py [myScript3.py [...]]] [3]

page 36

If you include a .txt file on the command line in [3] it is assumed to be a job options text file and

treated accordingly. In all cases, any other kind of file will be seen as an error and will stop the script.

Debugging a script is different from debugging an application because your debugger wonÕt find any

symbols in the script, causing it to complain. You can run the debugger with this script in two ways.

First, the more "classical" approach (using gdb as an example):

1. Start the debugger with ÔpythonÕ as the executable: gdb python

2. Specify the program arguments: (gdb) set args -itx athena.py [<scripts>]

3. Run the program like youÕre used to: (gdb) run

Alternatively, you can specify the Ô-dÕ option to Ôathena.pyÕ. This will start Athena, spawn the

debugger (default: dbg, specify Ô-d dbxÕ or anything else you might like on Solaris), and give you the

prompt of the debugger just before Athena would be starting to run the algorithms. You can alternate

between the Python and gdb prompts by hitting ^C in Python or typing ÔcontinueÕ on the dbg prompt,

unless youÕre running of a job options text file only, in which case you wonÕt get to the Python prompt.

If your final Python script is not ended with a call to ÔtheApp.exit()Õ, youÕll be left with the

Python prompt after execution of all scripts.

4.4.2 Using a Python script for configuration and control

Currently, this implementation is flawed due to a few inconsistensies in GAUDI. You should only use it

if you intend to use the McEventSelector. YouÕll likely have problems if you want to use the ZebraTDR

facilities instead. It hasnÕt been tested, though. It might work.

The necessity for using a job options text file for configuration can be avoided by specifying a Python

script as a command line argument as shown in Listing 4.2.

Notes:

1. The file extension .py is used to identify the job options file as a Python script. All other

extensions are assumed to be job options text files.

This approach may be used in two modes. The first uses such a script to establish the configuration, but

results in the job being left at the Python shell prompt. This supports interactive sessions. The second

specifies a complete configuration and control sequence and thus supports a batch style of processing.

The particular mode is controlled by the presence or absence of Athena-specific Python commands

described in Section 4.8.

Listing 4.2 Using a Python script for job configuration

athena MyPythonScript.py [1]

page 37

Chapter 4 Scripting Version/Issue: 8.0.0

4.4.3 Using a job options text file for configuration with a Python interactive shell

Python scripting is enabled when using a job options text file for job configuration by adding the lines

shown in Listing 4.3 to the job options file.

Notes:

1. This entry specifies the component library that implements Python scripting. If other DLLs

are specified first, then care should be taken to use the +=operator syntax in order not to

overwrite the other component libraries.

2. This entry specifies the use of the Python scripting implementation as the run manager.

Once the initial configuration has been established by the job options text file, control will be handed

over to the Python shell. It is possible to run in batch mode, still: simply pipe the Python script, as is

shown in Listing 4.4.

4.5 Prototype functionality

The functionality of the prototype is limited to the following capabilities. This list will be added to as

new capabilities are made available:

1. The ability to read and store basic Properties for framework components (Algorithms,

Services, Auditors) and the main ApplicationMgr that controls the application. Basic

properties are basic type data members (int, float, etc.) or SimpleProperties of the components

that are declared as Properties via the declareProperty() function.

2. The ability to retrieve and store individual elements of array (list) properties.

3. The ability to specify a new set of top level Algorithms.

4. The ability to add new services and component libraries and access their capabilities

5. The ability to specify a new set of members or branch members for Sequencer algorithms.

6. The ability to specify a new set of output streams.

Listing 4.3 Job Options text file entries to enable Python scripting

ApplicationMgr.DLLs = { "GaudiPython", "McEventSelector }; [1]

ApplicationMgr.Runable = "PythonScriptingSvc"; [2]

Listing 4.4 Specifying a job options file for application execution

athena [job options file] < MyPythonScript.py [1]

page 38

7. The ability to specify a new set of "AcceptAlgs", "RequireAlgs", or "VetoAlgs" properties for

output streams.

4.6 Property manipulation

An illustration of the use of the scripting language to display and set component properties is shown in

Listing 4.5:

Listing 4.5 Property manipulation from the Python interactive shell

>>>theApp.algorithms()

[1][2]

(’TopSequence’, ’Sequence1’, ’Sequence2’)

>>> theApp.services() [3]

(’MessageSvc’, ’JobOptionsSvc’, ’EventDataSvc’, ’EventPersistencySvc’,

’DetectorDataSvc’, ’DetectorPersistencySvc’, ’HistogramDataSvc’,

’NTupleSvc’, ’IncidentSvc’, ’ToolSvc’, ’HistogramPersistencySvc’,

’ParticlePropertySvc’, ’ChronoStatSvc’, ’RndmGenSvc’, ’AuditorSvc’,

’ScriptingSvc’, ’RndmGenSvc.Engine’)

>>> TopSequence.properties() [4]

{’ErrorCount’: 0, ’OutputLevel’: 0, ’BranchMembers’: [],

’AuditExecute’: 1, ’AuditInitialize’: 0, ’Members’:

[’Sequencer/Sequence1’, ’Sequencer/Sequence2’], ’StopOverride’: 1,

’Enable’: 1, ’AuditFinalize’: 0, ’ErrorMax’: 1}

>>> TopSequence.OutputLevel [5]

’OutputLevel’: 0

>>> TopSequence.OutputLevel=1 [6]

>>> TopSequence.Members=[’Sequencer/NewSeq1’, ’Sequencer/NewSeq1’] [7]

>>> TopSequence.properties()

{’ErrorCount’: 0, ’OutputLevel’: 1, ’BranchMembers’: [],

’AuditExecute’: 1, ’AuditInitialize’: 0, ’Members’:

[’Sequencer/NewSeq1’, ’Sequencer/NewSeq1’], ’StopOverride’: 1,

’Enable’: 1, ’AuditFinalize’: 0, ’ErrorMax’: 1}

>>> theApp.properties() [8]

{’JobOptionsType’: ’FILE’, ’EvtMax’: 100, ’DetDbLocation’: ’empty’,

’Dlls’: [’HbookCnv’, ’SI_Python’], ’DetDbRootName’: ’empty’,

’JobOptionsPath’: ’jobOptions.txt’, ’OutStream’: [],

’HistogramPersistency’: ’HBOOK’, ’EvtSel’: ’NONE’, ’ExtSvc’:

[’PythonScriptingSvc/ScriptingSvc’], ’DetStorageType’: 0, ’TopAlg’:

[’Sequencer/TopSequence’]}

>>>

page 39

Chapter 4 Scripting Version/Issue: 8.0.0

Notes:

1. The ">>>" is the Python shell prompt.

2. The set of existing Algorithms is given by the theApp.algorithms() command.

3. The set of existing Services is given by the theApp.services() command.

4. The values of the properties for an Algorithm or Service may be displayed using the

<name>.properties() command, where <name> is the name of the desired Algorithm

or Service.

5. The value of a single Property may be displayed (or used in a Python expression) using the

<name>.<property> syntax, where <name> is the name of the desired Algorithm or Service,

and <property> is the name of the desired Property.

6. Single valued properties (e.g. IntegerProperty) may be set using an assignment

statement. Boolean properties use integer values of 0 (or FALSE) and 1 (or TRUE). Strings

are enclosed in "Õ" characters (single-quotes) or """ characters (double-quotes).

7. Multi-valued properties (e.g. StringArrayProperty) are set using "[...]" as the array

(list) delimiters.

8. The theApp object corresponds to the ApplicationMgr and may be used to access its

properties.

4.7 Synchronization between Python and Athena

It is possible to create new Algorithms or Services as a result of a scripting command. Examples of this

are shown in Listing 4.6:

If the specified Algorihm or Service already exists then its properties can immediately be accessed.

However, in the prototype the properties of newly created objects cannot be accessed until an

equivalent Python object is also created. This restriction will be removed in a future release.

This synchronization mechanism for creation of Python Algorithms and Services is illustrated in

Listing 4.7:

Listing 4.6 Examples of Python commands that create new Algorithms or Services

>>> theApp.ExtSvc += ["ANewService"]

>>> theApp.TopAlg = ["TopSequencer/Sequencer"]

Listing 4.7 Examples of Python commands that create new Algorithms or Services

>>> theApp.ExtSvc += ["ANewService"]

>>> ANewService = Service("ANewService") [1]

>>> theApp.TopAlg = ["TopSequencer/Sequencer"]

>>> TopSequencer = Algorithm("TopSequencer") [2]

>>> TopSequencer.properties()

page 40

Notes:

1. This creates a new Python object of type Sequencer, having the same name as the newly

created Athena Sequencer.

2. This creates a new Python object of type Algorithm, having the same name as the newly

created Athena Algorithm.

The Python commands that might require a subsequent synchronization are shown in Listing 4.8:

4.8 Controlling job execution

This is very limited in the prototype, and will be replaced in a future release by the ability to call

functions on the Python objects corresponding to the ApplicationMgr (theApp), Algorithms, and

Services.

In the prototype, control is returned from the Python shell to the Athena environment by the command

in Listing 4.9:

Notes:

1. This is a temporary command that will be replaced in a future release by a more flexible

ability to access more functions of the ApplicationMgr. "nEvents" is the number of events

that should be processed.

This will cause the currently configured event loop to be executed, after which control will be returned

to the Python shell.

Listing 4.8 Examples of Python commands that might create new Algorithms or Services

theApp.ExtSvc += [...]

theApp.TopAlg = [...]

Sequencer.Members = [...]

Sequencer.BranchMembers = [...]

OutStream.AcceptAlgs = [...]

OutStream.RequireAlgs = [...]

OutStream.VetoAlgs = [...]

Listing 4.9 Python command to resume Athena execution

>>> theApp.run(nEvents) [1]

page 41

Chapter 4 Scripting Version/Issue: 8.0.0

Typing Ctrl-D (holding down the Ctrl key while striking the D key) at the Python shell prompt will

cause an orderly termination of the job. Althernatively, the command shown in Listing 4.10 will also

cause an orderly application termination.

This command, used in conjunction with the theApp.run() command, can be used to execute a Python

script in batch rather than interactive mode. This provides equivalent functionality to a job options text

file, but using the Python syntax. An example of such a batch Python script is shown in Listing 4.11:

Listing 4.10 Python command to terminate Athena execution

>>> theApp.exit() [1]

Listing 4.11 Python batch script

>>> theApp.TopAlg = ["HelloWorld"]

 [other configuration commands]

>>> theApp.run(nEvents)

>>> theApp.exit()

page 42

page 43

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

Chapter 5

StoreGate - the event data access model

5.1 Overview

A more detailed version of this chapter is contained in the document The ATLAS Data Model UserÕs

Guide, which is available in the ATLAS CVS repository at:

offline/AtlasDoc/doc/DataModel

5.2 The Data Model Architecture

5.2.1 Data Objects and Algorithms

 The Gaudi software architecture belongs to the blackboard family: data objects produced by

knowledge modules (called Algorithms in Gaudi) are posted to a common "in-memory data base" from

where other modules can access them and produce new data objects.

This model greatly reduces the coupling between knowledge modules containing the algorithmic code

for analysis and reconstruction, in that one knowledge module does not need anymore to know which

specific module can produce the information it needs nor which protocol it must use to obtain it (the

"interface explosion" problem described in component software systems). Algorithmic code is known

to be the least stable component of software systems and the blackboard approach has been very

effective at reducing the impact of this instability, from the Zebra system of the FORTRAN days to the

Java Data Objects architecture.

page 44

5.2.2 StoreGate: the Atlas Transient Data Store

The Transient Data Store (TDS) is the blackboard of the Gaudi architecture: an Algorithm creates a data

object and post it onto the TDS to allow other Algorithms to access it1.

Once an object is posted on to the store, the TDS takes ownership of it and manages its lifetime

according to preset policies, removing, for example, a TrackCollection when a new event is read. The

TDS also manages the conversion of a data object from/to its persistent form and provides therefore an

API to access data stored on persistent media.

 StoreGate (SG) is the Atlas implementation of the TDS. It manages the data objects in transient form, it

steers their transient/persistent conversion and it provides a dictionary allowing to identify and retrieve

data objects in memory. The SG design and implementation was largely driven by a few design

concepts that are worth describing as a way of introduction.

5.2.2.1 Avoid User-defined Keys

 The disadvantage of the data/knowledge objects separation is the need for knowledge objects to

identify data objects to be posted on or retrieved from the blackboard. It is crucial to develop a data

model optimized for the required access patterns and yet flexible enough to accommodate the

unexpected ones.

SG addresses this problem with a two-step approach: it defines a natural identifier mechanism for data

objects and it transparently associates to each data object a default value of this identifier allowing

developers to register and retrieve data objects without having to identify them explicitly.

The first component of the identifier is the data object type. Experience shows that HEP developers

tend to group the objects they work on into collections, most often STL vectors. As a result the TDS

will often contain a single instance of a data object type (say a TrackCollection or several related

ones (e.g. a TrackCollection for each component of the Inner Detector). The SG retrieve interface

covers these two use cases

 DataHandle<TrackCollection> theTrackColl; //STL forward_iterator

 sg->retrieve(theTrackColl); //get the (default) TrackCollection

 DataHandle<TrackCollection> beginTrackColls, endTrackColls;

 sg->retrieve(beginTrackColls, endTrackColls); //get all TrackColls

Type-based identification is not always sufficient. For example the TDS may contain several equivalent

instances of a TrackCollection produced by alternative tracking algorithms. Therefore we need to add a

second component to our identification mechanism: the identifier of the Algorithm instance that

produced the data object we want2.In the spirit of working with user types, the SG will allow

developers to augment this history identifier with a generic key optimized for their access patterns.

1. To be precise the current TDS implements only a "passive" blackboard, since Algorithms do not (yet) react to TDS

events (e.g. executing after a data object is registered into the TDS)

2. Notice that we need to identify the instance rather than the class. In an often quoted use case, clients may want to

distinguish among tracks reconstructed by the same tracking algorithm using different jet-cone sizes.

page 45

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

5.2.2.2 Work with User Types

The success of the STL and of other public domain template libraries means that it has become vital to

design an open system that can work with generic types that export an interface, in particular the STL

containers, rather than forcing data objects to import a common interface. SG adapts its behavior to the

functionality each data object exports. The only SG-imposed constraint on a data object1 is to be an

STL Assignable type.

5.2.2.3 Control Object Access and Creation

The TDS is the main channel of communication among modules. A data object is often the result of a

collaboration among several modules. SG allows a module to use transparently a data object created by

an upstream module or read from disk.

A Virtual Proxy defines and hides the cache-fault mechanism: upon request2, a missing data object

instance can be transparently created and added to the TDS, presumably retrieving it from a persistent

data-base or, in principle, even reconstructing it on demand.

To ensure reproducibility of data processing, a data object should not be modified after it has been

published to the store, the same handle/proxy scheme is used to enforce an ‘‘almost const’’ access

policy: modules downstream of the publisher are only allowed to retrieve a constant iterator to the

published object.

5.2.2.4 Support Inter-object Relationships

SG supports uni-directional inter-objects relationships, or links. A link is a persistable pointer. If the

linked object is a data object then the handle/proxy mechanism described above is also used to

implement the link. But typically links will refer to objects that are not data objects but are contained

within a data object. The SG knows how to get to the container and the container knows how to return

an element given its index. The job of the link is to find out the value of the index, persistify it and, later

on, pass it on to the container and get back the linked object.

5.3 Data Objects

As we mentioned earlier SG is designed to work with user types rather than requiring them to

implement a C++ interface. Basically any STL Assignable (i.e. any type which has an operator =

and/or a copy constructor) can be stored into SG and hence is a Data Object.

1. this does not mean that the data model, simulation and reconstruction groups should not issue design guidelines to

ensure that ATLAS data objects behave consistently in terms of memory management and persistability

2. Currently the proxy uses lazy instantiation (i.e. the object is created only when the handle is dereferenced).

page 46

A Data Object is a struct or class that encapsulates and "publishes" the result of some arbitrarily

complex processing performed by one or more Algorithms. A Data Object should present a predictable,

stable and efficient interface to client Algorithms.

A Data Object is often persistable and in this case the interface must be sufficient to allow a Converter

to capture the Data Object state on disk and to restore it. The best advice to the Data Object designer is

to keep them simple1.

5.3.1 Using Containers as Data Objects

Experience shows that most Data Objects are containers (of hits, cells, tracks, muons,...). In particular

STL containers are perfectly valid Data Objects and can be stored into SG.

The developer of a Data Object container must decide if the container they want to store is a Value

Container or a View Container and then are they are strongly advised to use the tools and policies SG

provides to implement them.

5.3.1.1 View Containers

A View Container is a container of object references. The referred-to objects are not owned by the

View Container and will, in general, continue to exist after the View goes out of scope. As an example

the list of cells which were used to reconstruct a photon is a View on the container(s) of reconstructed

calorimeter cells. A View Container that does not need to be persistified can be implemented using

plain C++ pointers, e.g. std::list<const CaloCell*>. A persistable view should be

implemented using DataLinks.

5.3.1.2 Value Containers

A Value Container is a container that owns its elements "by-value": the elements cease to exist when

the container does. For example the LAr cell recontruction may add the cells it makes to a

LArCellContainer that is later recorded on SG. When a LArCellContainer goes out of scope

all LArCells it contains are deleted.

Whenever possible LArCellContainer should be implemented as a standard STL container of

LArCell objects (e.g. as a std::vector<LArCell>).

Unfortunately this can not be done when LArCell is abstract: a polymorphic container (as containers

of abstract elements are called) can only be implemented using STL as a container of pointers, e.g.

std::vector<LArCell*>. But, as we mentioned in the previous section, a STL container of

pointers is not a Value Container: it does not own its elements.

1. As a rule of thumb, if you need to include more than a couple of Atlas-specific header files to define a Data Object

interface and its implementation, you should probably move some complexity out of it

page 47

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

To support polymorphic Value containers, SG provides two class templates, DataList,

DataVector and a reference counted pointer DataPointer in terms of which the three containers

are implemented:

 std::vector< DataPtr<T> > DataVector<T>

 std::list< DataPtr<T> > DataList<T>

 std::map< DataPtr<K,T> > DataMap<K,T>

DataPtr<T> behaves like a plain C++ pointer T* and can be freely assigned to and from a T*.

 typedef DataVector<CaloCell> CellContainer;

 // this is completely equivalent to

 // typedef std::vector< DataPtr<CaloCell> > CellContainer;

 CellContainer caloCells;

 intV.reserve(nCells);

 for (int i=0; i<nCells; ++i) {

 CaloCell* pThisCell = fillThisCell(i);

 caloCells.push_back(pThisCell);

 }

 CellContainer::const_iterator it(caloCells.begin());

 CellContainer::const_iterator iEnd(caloCells.end());

 while (it!=iEnd) {

 const CaloCell& thisCell = **it; //vector of pointers!

 std::cout << thisCell.energy() << std::endl;

 ++it;

 }

when CellContainer goes out of scope, the vector destructor will delete the

DataPtr<CaloCell>. In normal usage1 this will trigger the deletion of the CaloCell instance as

desired.

In summary to define a Value Container of instances of a concrete class use plain STL containers. Use

containers of DataPtrs for polimorphic Value Containers. If you prefer using the shorthands DataVector

and DataList please remember that a DataVector<CaloCell> has the semantics of a

std::vector<CaloCell*> and not of std::vector<CaloCell>.

5.3.2 Describing Data Objects to SG

StoreGate uses a compact, technology-independent mechanism2 to describe object types with two

integer identifiers: a CLID and a VERSION. CLID is a 16-bit integer which uniquely identifies an

object type across all Atlas software. The CLID of say EventInfo should not change from one

1. As always with ref-counted pointers care must be take to avoid cyclical dependencies (a points to b which points back

to a).

2. Adapted from Gaudi Persistency Framework and capable of interacting with it.

page 48

release to another. If EventInfo changes in a non-backward compatible way a new VERSION

number must be assigned to it1.

 SG provides a cpp preprocessor macro to define CLID and VERSION for a type

EventInfo.h:

class EventInfo {

 ...

}

#ifndef TOOLS_CLASSID_TRAITS_H

#include ‘‘StoreGate/tools/ClassID_traits.h’’

#endif

CLASS_DEF(EventInfo, 2101, 0)

Although the intention is to have them generated automatically using the Atlas Dictionary, as of release

3.1.0 these macros have to be explicitely added by each Data Object developer to the class header file,

hence CLASS_DEF(EventInfo, 2101, 0) should be placed in EventInfo.h. For templated

Data Objects (e.g. std::vector<Track>) or for "external" Data Objects {e.g. HepMC::Vertex)

of which we can’t modify the header file, we recommend adding the CLASS_DEF macros into a

separate header file per Data Object package.

MyPackage_ClassDefs.h:

#ifndef TOOLS_CLASSID_TRAITS_H

#include ‘‘StoreGate/tools/ClassID_traits.h’’

#endif

CLASS_DEF(std::list<MyContObj>, 8003, 1)

CLASS_DEF(std::vector< DataPtr<MyAbstractCell> >, 8004, 1)

5.3.3 Data Object Creation and Ownership of Data Objects

Data Objects must be created on the heap using the new command:

 DataVector<LArCell> *pCells = new DataVector<LArCell>;

Data Objects recorded to SG are owned by SG and the creator must not delete them.

5.4 Accessing Data Objects

This section is a tutorial on how to use StoreGate to access DataObjects from user Algorithms. The

examples in it are based on the ones in the AthenaExamples/AthExStoreGateExample

Tutorial package.

1. As of release 3.1.0 the VERSION number is not yet used by SG.

page 49

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

As a preliminary, each user algorithm must locate the relevant StoreGateSvc instances in its initialize

method. For example:

StatusCode SGRead::initialize()

{

 StatusCode sc;

 //locate event store pointer and cache it in a SGread data member

 sc = service("StoreGateSvc", p_eventStore);

 if (sc.isFailure()) {

 log << MSG::ERROR

 << "Unable to retrieve pointer to Event StoreGateSvc"

 << endreq;

 return sc;

 }

 //locate detector store pointer and cache it in a SGread data member

 sc = service(‘‘DetectorStore", p_detectorStore);

 if (sc.isFailure()) {

 log << MSG::ERROR

 << "Unable to retrieve pointer to Detector StoreGateSvc"

 << endreq;

 return sc;

 }

5.4.1 Recording a Data Object

To record a Data Object we must provide StoreGateSvc with a pointer to the Data Object created on the

heap1, and, optionally with a key.

StatusCode SGWrite::execute() {

 ...

 MyDataObj *pdobj = new MyDataObj; // Create a DataObject

 pdobj->val(42); // Set its internal state

 ...

 StatusCode sc = p_eventStore->record(pdobj, dataObjKey);

 if (sc.isFailure())

 {

 log << MSG::ERROR

<< " could not register object " << dataObjKey

<< endreq;

 return StatusCode::FAILURE;

 }

 ...

}

1. i.e. using the operator new

page 50

here pdobj is the pointer to a MyDataObj created on the heap (i.e. using new), and dataObjKey is

a reference to a valid key object. Usually a key is an instance of std::string but any class that can

be converted to and from a string can be used as key1. The combination of type and key are the SG

object identifier and they must be unique.

Once a Data Object has been recorded, SG takes ownership of it. Never delete a recorded Data Object.

5.4.1.1 Locking a Data Object

We strongly recommend to lock a Data Object once it is ready to be used by client algorithms. The

preferred way to achieve this is to add a bool flag to the record invocation:

 static const bool ALLOWMODS(false);

 StatusCode sc = p_eventStore->record(pdobj, dataObjKey, ALLOWMODS);

Once a Data Object has been locked, downstream clients will not be able to modify its contents (see

next section).

One can also lock an already recorded object using

 StatusCode sc = p_eventStore->setConst(pdobj);

where pdobj is the pointer to the Data Object in memory.

We are considering to enforce Data Object locking in a forthcoming release, by disallowing to write out

"non-const" Data Objects.

5.4.2 Retrieving a Data Object

Data Objects in SG are retrieved by type. SG sets a pointer to the requested object(s) of a given type.

5.4.2.1 Retrieving the default instance of a given type

SG defined the default DataObject of a given type as the last one recorded. To retrieve the default

instance, one passes a pointer to the Data Object to SG "keyless" retrieve method to set

 const DataVector<MyElement> *pcoll(0);

 if (m_eventStore->retrieve(pcoll).isSuccess()) {

//use pcoll

 } else {

 log << MSG::ERROR

 << "can’t retrieve default DataVector<MyElement>" << endreq;

 return StatusCode::FAILURE;

1. In the near future (release 5.x?) we plan to allow to use integers as keys. Eventually any type that can be hashed into

an integer will be usable as a key.

page 51

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

 }

Notice that you can retrieve a Data Object which has not yet been read from disk: SG will message the

persistency service and the appropriate converter1 will create the Data Object.

5.4.2.2 Retrieving a keyed instance of a given type

 const MyDataObj *pdobj(0);

 if (m_eventStore->retrieve(pdobj, m_DataObjKey).isSuccess()) {...}

Since two Data Objects of the same type can not have the same key, you are assured of being returned a

unique Data Object (provided of course it exists).

5.4.2.3 Retrieving a Data Object to modify it

If a Data Object has not yet been locked it is possible to modify it passing to retrieve a (non-const)

pointer that SG will set

 DataVector<MyElement> *pcoll(0);

 if (m_eventStore->retrieve(pcoll).isSuccess()) {

 collHandle->push_back(new MyElement(....));

 } else { ... }

if the DataVector has been already locked the retrieve will fail.

Once again, SG owns all stored Data Objects: never delete a Data Object using the pointer set by

retrieve.

5.4.2.4 Retrieving {\em all} instances of a given type

To retrieve all instances of MyDataObj in the store, create two DataHandle<MyDataObj> and let

record set them

 DataHandle<MyDataObj> dbegin;

 DataHandle<MyDataObj> dend;

 StatusCode sc = storeGateSvc()->retrieve(dbegin, dend);

 if (sc.isFailure())

 {

 log << MSG::ERROR << "Error Retrieving MyDataObj’s" << endreq;

 }

\end{verbatim}

DataHandle is a standard forward iterator2: the pair{\tt dbegin, dend} allows to

iterate over all stored instances of {\tt

1. SG mantains a list of DataProxy objects, each one of these managing the life-cycle of the Data Object they represent.

Besides containing the transient key of a Data Object and its CLID, a DataProxy has a pointer to the OpaqueAddress of

its Data Object which is passed to the appropriate converter when the Data Object has to be created \ref{UG}.

page 52

MyDataObj}

\begin{verbatim}

 while(dbegin != dend) // Loop Over \dobjs

 {

 dbegin->do_something(); //read MyDataObj if needed

 ++dbegin;

 }

notice that the Data Object pointed to by a DataHandle will not be accessed (and read from disk if

necessary) until the DataHandle is dereferenced.

5.4.2.5 Checking if a Data Object is in the store

SG provides two contains method sthat allow to check whether a given Data Object has already

been stored. The typical use case is as follows

if (!p_SG->contains<MyDataObject>(myKey)) {

 MyDataObject* pMDO = createMDO();

 if(!p_SG.record(pMDO, myKey).isSuccess()) {return StatusCode::FAILURE;}

}

as usual the "keyless" version of contains is also provided to check whether any Data Object of a

given type has been stored.

5.5 Using DataLinks to persistify references

In C++ we describe associations among objects using pointers or, less frequently, references. For

example, a cluster object may refer to its list of associated cells by holding a vector of Cell pointers

class Cluster {

 ...

 private:

 ...

 std::vector<Cell*> m_myCells;

};

Unfortunately a plain C++ pointer can not be simply written out and read back from disk as is: it is

valid only within the context of a running job.

To address this limitation we introduced DataLink and EementLink, two class templates which

can be dereferenced like a pointer and can be read and written using various persistency mechanisms.

The DataLink template allows to point to a data object, using its unique type/key combination.

2. Hence {\tt dend} points past the end of the list of returned objects: dereferencing {\tt dend} will have unpredictable,

but most likely fatal, results.

page 53

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

ElementLink is used to point to an element of a container recorded in StoreGate. ElementLink,

by default, allows to link to elements of any STL-derived sequence (e.g. std::vector and

std::list, but also DataVector and DataList).

5.5.1 Creating a DataLink to a data object

DataLinks can be set to refer to a data object either by providing a pointer to the data object or its

StoreGate identifier (type/key).

5.5.1.1 Construct a DataLink using a C++ pointer

 Most often the developer filling a DataLink will have a C++ pointer to the data object they want to

create an association to. For example let’s consider the PileUpEventInfo class. It carries a list of

references to the EventInfo data objects of the physics and background events used in the overlay

process:

class PileUpEventInfo {

 ...

 private:

 DataLink<EventInfo> m_origEvent;

 std::list<DataLink<EventInfo> > m_subEvents;

};

 ...

}

we can create a DataLink<EventInfo> from an EventInfo* and add it to m_subEvents

 std:list<EventInfo*> pSubEvts;

 ... fill pSubEvts ...

 for (int i=0, i<nSubEvts, i++) {

 m_subEvents.push_back(DataLink<EventInfo>(*pSubEvts[i]));

 }

Of course the pointer used to set the DataLink<EventInfo> must refer to an EventInfo which

has been or will be recorded into StoreGate. Both for convenience and for efficiency reasons,

DataLink will not look-up the data object is pointing to, until the DataLink itself has to be

persistified, or until the user invokes

DataLink<{...}>::dataID()

At that point, if the data object is not found in the store an exception will be thrown.

5.5.1.2 Construct a DataLink using its StoreGate Key

If you know the key identifying a data object in the store you can also use it to create a link to it:

 DataLink<EventInfo> m_origEvent;

page 54

 ...

 m_origEvent.toStorableObject(‘‘PhysicsTDR’’);

 ...

5.5.2 Creating a Link to an Element of a Container

Quite often the linked object is not a data object but an element of a data object (typically a STL

container). In the example of the Cluster class the linked objects are Cell objects contained in a

DataVector<CaloCell>, which behaves like a std::vector<CaloCell*> and hence it is an

example of STL Sequence. To make the Cluster class above persistable, we replace the Cell

pointers with ElementLinks:

class Cluster {

 typedef DataVector<CaloCell> CaloCellContainer;

 std::vector< ElementLink<CaloCellContainer> > m_myCells;

 void addCells() {

 const CaloCellContainer* pCont;

 if ((p_eventStore->retrieve(pCont)).isSuccess()) {

unsigned int nCells(pCont->size());

for (unsigned int iCell=0; iCell<nCells; ++iCell) {

 if (weLikeThisCell((*pCont)[iCell])) {

 ElementLink<CaloCellContainer> linkCell;

 linkCell.toIndexedElement(*pCont, iCell);

 m_myCells.push_back(linkCell);

 }

 }

 }

 }

};

Please notice the difference between DataLink<CaloCellContainer>, a pointer to a

CaloCellContainer, and ElementLink<CaloCellContainer> which behaves like a

pointer to an element of a CaloCellContainer (hence like a CaloCell**).

5.5.3 ElementLinks to other Containers

The header file StoreGate/tools/DeclareIndexingPolicy.h provides two macros that

"inform" SG that a given container is (or behaves like) an std::map or std::set. For example

 in MyHitMap.h

 typedef std::map<Identifier32, LArHit*> MyHitMap;

 #include ‘‘StoreGate/tools/DeclareIndexingPolicy’’

 CONTAINER_IS_MAP(MyHitMap);

 in MyUniqueInts.h

 typedef std::set<unsigned int> MyUniqueInts;

 #include ‘‘StoreGate/tools/DeclareIndexingPolicy’’

page 55

Chapter 5 StoreGate - the event data access model Version/Issue: 8.0.0

 CONTAINER_IS_SET(MyUniqueInts);

although it should be redundant, for completeness DeclareIndexingPolicy also provides a

CONTAINER_IS_SEQUENCE macro.

Advanced developers can also specialize ElementLink to link to elements of arbitrary containers

from GeneratorObjects/McEventLinks.h

 typedef ElementLink<McEventCollection, \\target container

 DataProxyStorage<McEventCollection>, \\default

 GenParticleIndexing> \\HepMC indexing policy

 GenParticleLink

A description of how to define a specialized indexing policy like GenParticleLink is beyond the

scope of this document. You are welcome to contact the authors for help.

5.5.4 Accessing DataLinks

DataLinks are dereferenced as pointers: in the Cluster class above you can

void Cluster::workWithCells() {

 ...

 const Cell& cell33 = *(m_myCells[33]);

 ...

 unsigned int i(0), nCells(m_myCells.size());

 while(i<nCells) clusterRawEnergy += (**(m_myCells[i++])).energy();

}

notice that, unlike DataHandles and plain pointers, DataLink is not an iterator: you can not

increment it or perform any "pointer-arithmetic" on it.

Notice also how the ElementLink<CaloCellContainer> must be dereferenced twice: the

ElementLink is a pointer to an element of a vector of CaloCell*, hence it is equivalent to a

CaloCell**.

5.5.5 DataLinks Persistency

For stream-based persistency (e.g. root, Gaudi generic converters or plain files) SG provides templated

inserter (operator >>) and extractor (operator <<) operators:

void Cluster::Streamer(TBuffer& tbuf) {

 typedef ElementLink< std::vector< DataPtr<CaloCell> > > CellLink_t;

 ...

 if (tbuf.IsReading()) {

 std::vector<CellLink_t>::size_type i(0), nCells(0);

 tbuf >> nCells;

 for(;i<nCells;++i) {

 CellLink_t inLink;

page 56

 tBuf >> inLink;

 m_myCells.push_back(inLink);

 }

 ...

 } else if (tbuf.IsWriting()) {

 std::vector<CellLink_t>::size_type i(0), nCells(m_myCells.size());

 tbuf<< nCells;

 while(i<nCells) tBuf << m_myCells[i++];

 ...

 }

}

To support other persistency technologies, DataLink provides a method1:

//StoragePolicy method returning the data object key

const ID_type& dataID() throw(std::logic_error); //ID_type is a string

ElementLink provides also another method that returns the index of the element inside the container

(this is e.g. an unsigned int for a Sequence and the key_type for a std::map)

//IndexingPolicy method returning the element index inside the data

//object container.

index_type index() const {return m_key;}

//index_type is unsigned int for sequences, key_type for maps and sets

5.6 History

This section is incomplete.

1. actually inherited from its StoragePolicy

page 57

Chapter 6 Data dictionary Version/Issue: 8.0.0

Chapter 6

Data dictionary

6.1 Overview

One of the central components of Athena is the data dictionary that is used both for coupling together

the C++ and Python (scripting) environments, but also as part of the auto-generation of persistency

converters for elements of the Event Data Model.

6.2 How to write/read data via POOL

There are basically three steps needed to be able to work with POOL:

page 58

1. The objects to be stored in POOL must be "described" in a data dictionary which exists in

memory when a program runs. As far as POOL is concerned, this dictionary contains the

description of the types of all attributes for the objects to be stored. What is meant by

description is just the size and position of an attribute. Other applications, e.g. python

scripting, will also need to have methods described in order to be able to call them.

 This description is built by creating a data dictionary filler, which is just a library that when

loaded into memory will fill the memory resident dictionary with descriptions for a set of

classes.

 Conventions:

Where to create the dictionaries: Each XXXEvent, YYYDetDescr, ZZZConditions

package defining data objects to be stored will create its own dictionary filler library

by applying CMT lcgdict pattern. There are exceptions to this rule for packages that

do not include framework-related dependencies. For example, there is a

DetDescrDictionary package for defining the Identifier-related classes.

How to use classes defined in different dictionaries: Each package should only

"describe" classes that it contains. (This is done in a selection file.) To "use" a

description in another library, one simply needs to "load" the other library. This

"loading" of the dictionaries is temporarily done by explicitly linking the converters

(see next step) to the dictionary filler libs, so that one only specifies to load a

particular converter. This must be specified by hand for the converters. An

improved automation will eventually be deployed so that this linking will no longer

be required.

2. Objects are written and read to POOL via converters of the AthenaPoolCnvSvc. For most

objects generic converters are sufficient, thus we have provided a CMT pattern which can be

applied. (See generating converters.) However there are situations where the converters need

to be customized, for example, to set the values of transient detector description pointers

when event objects are read in. (See writing custom converters.)

 Conventions:

As opposed to the dictionary fillers which are generated in the data packages, the

POOL converters are grouped together into separate packages according to

subsystem, reconstruction, etc. For example packages that exist today are:

EventAthenaPool

RecAthenaPool

InDetEventAthenaPool

MuonEventAthenaPool

3. Finally, one needs to specify the job options for reading and writing. This is described in

setting up the joboptions.

 Last but not least, we maintain a changing list of caveats, problems and work-arounds which hopefully

diminish as Atlas and POOL software improves.

page 59

Chapter 6 Data dictionary Version/Issue: 8.0.0

6.2.1 Creating a data dictionary filler

To explain how to generate a dictionary filler for a data package, we take as an example the

SimpleTrack package. The basic procedure is to use the cmt pattern "lcgdict" to generate a dictionary

for a package with data objects. This creates a shared library which is dynamically loadable. There is

also a small job option file generated which adds the library name to a list of libs to be loaded by the

AthenaSealSvc. If this job option file is included from one’s application joboptions, then

AthenaSealSvc will load the lib at initialization time.

 Note that a corresponding pattern, poolcnv, which today is in the AtlasPOOL package, is used to

generate pool converters. This is described in the AtlasPoolUtilities package.

The procedure:

page 60

1. Use the SimpleTrack packageas an example. The relevant portion of the requirements file is

shown in Listing 6.1. You will need to add a use to AtlasSEAL and apply the pattern

lcgdict. To do the latter, you need to create a <package>Dict.h file and a

selection.xml file.

2. Create a single <package>Dict.h which just includes the other header (.h) files. An

example is shown in Listing 6.2:

This creates a single C++ file to compile and avoids multiple definitions of symbols in the lib

which may arise if each .h is listed separately. Note that the file <package>Dict.h is

given as an argument for the lcgdict pattern (see Listing 6.1).

Listing 6.1 Package SimpleTrack Requirements file

package SimpleTrack

author Laurent Vacavant <Laurent.Vacavant@cern.ch>

use AtlasPolicy AtlasPolicy-01-*

use DataModel DataModel-00-* Control

use CLIDSvc CLIDSvc-00-* Control

library SimpleTrack *.cxx

apply_pattern installed_library

private

use AtlasSEAL AtlasSEAL-00-* External -no_auto_imports

Pattern to build the dict lib. User should create a single header

file: <package>Dict.h which includes all other .h files. See MissingETDict

A selection file must be created by hand. This file lists the

classes to be added to the dictionary, and which fields are

transient. It should be put in ../<package> dir and is conventionally

called

selection.xml.

apply_pattern lcgdict dict=SimpleTrack selectionfile=selection.xml

headerfiles="../SimpleTrack/SimpleTrackDict.h"

Listing 6.2 Example <package>Dict.h file

#ifndef SIMPLETRACK_SIMPLETRACKDICT_H

#define SIMPLETRACK_SIMPLETRACKDICT_H

#include "SimpleTrack/SimpleTrackCollection.h"

#endif

page 61

Chapter 6 Data dictionary Version/Issue: 8.0.0

3. Create a selection.xml file in the header directory and specify it as the

selectionfile argument to the lcgdict pattern. The selection file contains a list of

classes for each of the data member types. An example of this is shown in Listing 6.3.

4. Not all data members are intended to be written out. For example, a class might have a pointer

to an object that is only used in transient memory. If the value is not intended to be written out,

then one should declare it transient, e.g. for the EventInfo class has a pointer to subEvent

for pileup which is only needed in memory. One declares this in the selection file as illustrated

in Listing 6.4.

One should make sure that the default constructor sets this to a reasonable value for objects

that are read back in. (Note: more sophisticated initialization of transient members will be

addressed in a future version of this documenation.)

5. You must specify the an "id" for all persistent data objects. (NOTE: we expect that this

requirement to create an id will eventually be removed and no id will be needed.) For

example,

 <class name="SimpleTrackCollection"

id="9E3595D6-1362-429A-8BA2-3396C93D6BA0" />

 For each "data object" with a CLID, an id number must be added as an "id" attribute. This

area is "changing" in POOL. At the moment, POOL 1.2.0, one must use a universally unique

identifier (UUID) which can be obtained with

 > uuidgen

5089b086-8b04-4696-a254-f5ce380f536e

and the resulting number is copied and made into uppercase.

Listing 6.3 Example selection.xml file

<lcgdict>

 <class name="SimpleTrackCollection"

id="9E3595D6-1362-429A-8BA2-3396C93D6BA0" />

 <class name="SimpleTrack" />

 <class name="DataVector<SimpleTrack>" />

 <class name="std::vector<SimpleTrack*>" />

</lcgdict>

Listing 6.4 Specifying data member overrides

 <class name="PileUpEventInfo::SubEvent" >

 <field name="pSubEvtSG" transient="true" />

 </class>

page 62

6. To check that the selection file is ok, you should run a check with the AthenaSealSvc which

loads the SimpleTrackDict and checks all fields to see that their type is defined.

 do "source setup.sh" and "gmake" and modify Load_AthenaSealSvc_joboptions.txt which

you will get in your run directory.

Uncomment "AthenaSealSvc.CheckDictionary = true;", set the output level to 2 and add in

includes for any other dictionary fillers that you want to check, or that your dictionary needs,

e.g. has inherited or embedded types. NOTE THE .txt IS IN /dict/!!! Note here we have added

the DetDescrDictionary for the Identifier classes and SimpleTrack.

Listing 6.5 Example of checking the selection file

In TestRelease req:

use AthenaCommon AthenaCommon-* Control

use AthenaSealSvc AthenaSealSvc-* Control

Need something, e.g. the following, to pull in libT_Histoxx.so

use TestEvent TestEvent-* Event

Listing 6.6 Job Options file

//

// JobOptions for the loading of the AthenaSealSvc

//

#include "$ATHENASEALSVCROOT/share/AthenaSealSvc_joboptions.txt"

#include "$DETDESCRDICTIONARYROOT/dict/DetDescrDictionary_joboptions.txt"

#include "$SIMPLETRACKROOT/dict/SimpleTrack_joboptions.txt"

// Set to output level to debug for more information

//MessageSvc.OutputLevel = 2;

// Check the dictionary in memory for completeness

//AthenaSealSvc.CheckDictionary = true;

page 63

Chapter 6 Data dictionary Version/Issue: 8.0.0

This prints out the classes and their fields and lists the classes missing (Listing 6.7).

This is the output when all fields have been defined. If there is something missing, there will

be a message. For example, if the selection file line:

Listing 6.7 Example session to check for missing classes

> athena.exe Load_AthenaSealSvc_joboptions.txt

...

AthenaSealSvc INFO

AthenaSealSvc INFO Checking the completeness of the dictionary for all

classes

AthenaSealSvc INFO

AthenaSealSvc INFO Checking fields of class DataVector<Pixel1RawData>: ok

AthenaSealSvc DEBUG Fields of class DataVector<Pixel1RawData>:

AthenaSealSvc DEBUG m_ownPolicy -- offset: 4 -- type: int

AthenaSealSvc DEBUG m_pCont -- offset: 8 -- type:

std::vector<Pixel1RawData*>

AthenaSealSvc DEBUG

AthenaSealSvc INFO Checking fields of class DataVector<PixelRDORawData>: ok

AthenaSealSvc INFO Checking fields of class DataVector<SimpleTrack>: ok

AthenaSealSvc DEBUG Fields of class DataVector<SimpleTrack>:

AthenaSealSvc DEBUG m_ownPolicy -- offset: 4 -- type: int

AthenaSealSvc DEBUG m_pCont -- offset: 8 -- type:

std::vector<SimpleTrack*>

...

AthenaSealSvc INFO Checking fields of class SimpleTrack: ok

AthenaSealSvc DEBUG Fields of class SimpleTrack:

AthenaSealSvc DEBUG m_A0Vert -- offset: 40 -- type: double

AthenaSealSvc DEBUG m_BarEnd -- offset: 256 -- type: double

AthenaSealSvc DEBUG m_BremRadius -- offset: 384 -- type: double

AthenaSealSvc DEBUG m_Chi2 -- offset: 32 -- type: double

AthenaSealSvc DEBUG m_CotThEnd -- offset: 240 -- type: double

...

AthenaSealSvc INFO -----> NO Missing fields!!

page 64

 <class name="std::vector<SimpleTrack*>" />

is missing, one will get:

where the attribute with a missing type is listed with type "[unknown]".

 Note that attributes declared as transient will have "[unknown - declared transient]".

You can add to the selection file and iterate until all problems are resolved. (It may be useful

to look in the dictionary filler cpp file to find the right class name to use, e.g. in

../dict/EventInfo/EventInfoDict_dict.cpp one will see that "std::basic_string" is needed for

std::string.)

Any job option that need dict files should have:

These just add to the list of AthenaSealSvc, and this service loads the dict libs.

6.2.2 generating converters

Pool converters are automatically generated using the CMT poolcnv pattern. By convention, the

generation is done in a single package for a number of classes. For example, the Reconstruction classes

are done in the Reconstruction/RecAthenaPool package. We use this package as an example.

Rule 1: each class must be declared in a separate .h file. For example,

MissingETEvent/MissingET.h defines the MissingET class and

SimpleTrack/SimpleTrackCollection.h defines the SimpleTrack collection.

Listing 6.8 Example session to check for missing classes

AthenaSealSvc INFO Checking fields of class SimpleTrackCollection:

AthenaSealSvc INFO ****> Missing type for DataVector<SimpleTrack> m_pCont

AthenaSealSvc DEBUG Fields of class SimpleTrackCollection:

AthenaSealSvc DEBUG m_ownPolicy -- offset: 4 -- type: int

AthenaSealSvc DEBUG m_pCont -- offset: 8 -- type:

[unknown]

Listing 6.9 Example session to check for missing classes

#include "$ATHENASEALSVCROOT/share/AthenaSealSvc_joboptions.txt"

#include "$EVENTINFOROOT/dict/EventInfo_joboptions.txt"

... (for each new dict)

page 65

Chapter 6 Data dictionary Version/Issue: 8.0.0

In the requirements file of converter package one has:

The "use AthenaPoolUtilities" is needed to get the poolcnv pattern. The other uses should

refer to packages with data objects which need converters.

One should provide the list of header files for the pattern "poolcnv". These can be taken from a

number of packages following the syntax of "-s=${<package>_root}/<package> <hdr1>

<hdr2>" which can be repeated.

Finally, one should temporarily link against the dictionary libraries containing the object descriptions

needed by the converter. This is done by adding the library names in the list of

<package>_linkopts as seen above. Note that this will be automated in the future so that the

dictionaries will be loaded when needed. When this happens the <package>_linkopts will need

to be removed.

6.2.3 writing custom converters

6.2.3.1 when to use custom converters

There are some situations where one needs to write a custom converter for a class which we divide into

two categories:

Listing 6.10 Convert package requirements file

package RecAthenaPool

author David Rousseau <rousseau@lal.in2p3.fr>

use AtlasPolicy AtlasPolicy-01-*

use AthenaPoolUtilities AthenaPoolUtilities-00-* Database/AthenaPOOL

use MissingETEvent MissingETEvent-00-* Reconstruction

use SimpleTrack SimpleTrack-00-* Reconstruction

temporarily add in explicit link to dictionary

macro_append RecAthenaPool_linkopts " -lSimpleTrackDict -lMissingETEventDict

"

apply_pattern poolcnv files="-s=${MissingETEvent_root}/MissingETEvent

MissingET.h

 -s=${SimpleTrack_root}/SimpleTrack

SimpleTrackCollection.h "

page 66

1. Modifying objects being read/written: For example when one declares attributes as transient

in the selection.xml file they are not written out. When reading in the default constructor is

called which may initialize the transient attributes. However, if one needs to set the transient

attributes externally, e.g. with DetDescr information, after an object is read in, then a custom

converter is needed.

2. Fine control over what is written: In some situation, one needs fine control over the I/O. One

example is the case of the InDetRawDataContainers for the InDet RDOs. These containers

group RDOs into RDO collections, which are in turn stored in the InDetRawDataContainers.

These containers have special behavior when reading in from the byte-stream - collections are

converted on-demand as clients request them from the container. However for pool, one is

interested in a bulk read/write of the container and not interested in writing collections one by

one. Custom converters are used here to read/write the containers and as well to initialize

them with their required id helper.

For both of these situations one will generate a converter skeleton. The difference will be in the level of

modification applied.

6.2.3.2 generate custom converter skeletons

Writing custom converters uses and extends the generated converters described above. To start, one

generates these converters to use as skeletons. The procedure is:

1. Specify the header file, e.g. MyClass.h, for which one wants a converter as described in

generating converters in a converter package.

2. Run gmake ONCE in the converter package. This will generate two files MyClassCnv.h and

MyClassCnv.cxx in the ../pool directory of the package. You should move these files to the

../src directory, modify them as described below and save them in the cvs repository. Once

there are MyClassCnv.h and MyClassCnv.cxx files in the src directory, a subsequent gmake

should NOT regenerate these files in ../pool, rather the ones in the src will be used. You

should Finally, keep MyClass.h in the poolcnv pattern because it is needed for building the

component library.

page 67

Chapter 6 Data dictionary Version/Issue: 8.0.0

6.2.3.3 customizing the converter skeletons

 Newly generated files are quite simple:

Listing 6.11 Converter skeletons

MyClassCnv.h:

#ifndef MyClassCnv_H

#define MyClassCnv_H

#include "AthenaPoolCnvSvc/T_AthenaPoolCnv.h"

#include "MyPackage/MyClass.h"

typedef T_AthenaPoolCnv<MyClass> MyClassCnv;

#endif

MyClassCnv.cxx:

#include "MyClassCnv.h"

page 68

The basic procedure for customization is to derive from the generic templated converter

T_AthenaPoolCnv<MyClass>. To do so, rename the typedef to MyClassCnvBase and derive from this

class:

Here we have added the constructor, destructor, initialize and PoolToDataObject which are probably the

minimal changes needed to set transient attributes when reading objects from pool. initialize can be

used to access, for example, StoreGate.

Listing 6.12 Customized converter

MyClassCnv.h:

//...

// We rename generated typedef to <converter>CnvBase

typedef T_AthenaPoolCnv<MyClassCnv> MyClassCnvBase;

/**

 ** Create derived converter to customize the saving of MyClass

 **/

class MyClassCnv : public MyClassCnvBase

{

 friend class CnvFactory<MyClassCnv >;

public:

 MyClassCnv(ISvcLocator* svcloc);

 virtual ~MyClassCnv();

 /// initialization

 virtual StatusCode initialize();

 /// Extend base-class conversion method to modify when reading in

 virtual StatusCode PoolToDataObject(DataObject*& pObj,const

std::string &token);

private:

 /// For your private attributes

};

page 69

Chapter 6 Data dictionary Version/Issue: 8.0.0

 The PoolToDataObject method should be implemented as:

page 70

Listing 6.13 Customized converter

MyClassCnv.cxx:

#include "MyClassCnv.h"

#include "GaudiKernel/MsgStream.h"

#include "StoreGate/StoreGateSvc.h"

#include "SGTools/StorableConversions.h"

// Constructor - call base constructor and initialize local attributes

MyClassCnv::MyClassCnv(ISvcLocator* svcloc) :

 // Base class constructor

 LArCellContainerCnvBase::T_AthenaPoolCnv(svcloc){}

MyClassCnv::~MyClassCnv(){}

StatusCode MyClassCnv::initialize() {

 AthenaPoolConverter::initialize(); // Call base clase initialize

 // Get the messaging service, print where you are

 MsgStream log(msgSvc(), "MyClassCnv");

 log << MSG::INFO << "initialize()" << endreq;

 // get DetectorStore service - if needed

 StoreGateSvc *detStore;

 StatusCode sc=service("DetectorStore",detStore);

 if (sc.isFailure()) {

 log << MSG::FATAL << "DetectorStore service not found !" << endreq;

 return StatusCode::FAILURE;

 } else {

 log << MSG::DEBUG << " Found DetectorStore " << endreq;

 }

 // Get objects from the detector store

 // ...

 log << MSG::DEBUG << "Converter initialized" << endreq;

 return StatusCode::SUCCESS;

}

StatusCode MyClassCnv::PoolToDataObject(DataObject*& pObj,const std::string

&token) {

 // First call base class converter to get DataObject from

 // pool. Then modify as appropriate

 MsgStream log(messageService(), "MyClassCnv::PoolToDataObject");

 StatusCode sc = MyClassCnvBase::PoolToDataObject(pObj, token);

 if (sc.isFailure()) {

 log << MSG::FATAL << "Unable to get object from pool" << endreq;

 return StatusCode::FAILURE;

 } else {

 log << MSG::DEBUG << " Found DataObject " << endreq;

 }

 // Convert DataObject pointer to MyClass*

 MyClass* obj=0;

 SG::fromStorable(pObj, obj);

 if(!obj) {

 log << MSG::ERROR << " failed to cast to MyClass " << endreq ;

 return StatusCode::FAILURE;

 }

 // Initialize MyClass

 // ...

 return StatusCode::SUCCESS;

}

page 71

Chapter 6 Data dictionary Version/Issue: 8.0.0

For more extensive customization for the converters, one may similarly modify an object before written

out by implementing:

MyClassCnv.h:

 /// Extend base-class conversion method for writing

 virtual StatusCode DataObjectToPool(DataObject* pObj,std::string

tname);

One may also write out an object of a completely different type than MyClass. This is possible as long

as the new class is defined in a Seal Dictionary. But because of the change in type, one will also have to

implement the two addition methods:

MyClassCnv.h:

 /// Must redefine placement according to type that is stored

 virtual void setPlacement();

 /// class ID

 static const CLID& classID();

 where

MyClassCnv.cxx:

const CLID& MyClassCnv::classID()

{ return ClassID_traits< MyClass >::ID() ; }

must return the CLID of MyClass. For a detailed example, see the InDet RDO converters, e.g.

PixelRDO_Container, which are in the InDetAthenaPool package.

6.2.3.4 detailed custom converter examples

For the simple case of initializing objects being read in have a look at the LArCell/LArCellContainer

example:

¥ LArCalorimeter/LArRecEvent - defines the dictionary for LArCell and container

¥ LArCalorimeter/LArCnv/LArAthenaPool - contains the custom converter

¥ AtlasTest/DatabaseTest/AthenaPoolTest - contains a simple write/read example which creates

dummy LArCells and checks that the same one can be read back. JobOptions:

LArCellContWriter_jobOptions.txt and LArCellContReader_jobOptions.txt

The InDet RDOs provide an example where one writes/reads a DataVector instead of an

IdentifiableContainer. The custom converter simply copies the RDO collections between the

IdentifiableContainer and DataVector before write and after read.

¥ InnerDetector/InDetRawEvent/InDetRawData - defines the dictionary for the RDOs,

collections, containers and extra DataVector

¥ InnerDetector/InDetEventCnv/InDetEventAthenaPool - contains the custom converters

page 72

¥ AtlasTest/DatabaseTest/AthenaPoolTest - contains a simple write/read example which creates

dummy RDOs and their collections and checks that the same one can be read back.

JobOptions: InDetRawDataWriter_jobOptions.txt and InDetRawDataReader_jobOptions.txt

page 73

Chapter 6 Data dictionary Version/Issue: 8.0.0

6.2.4 setting up the joboptions

6.2.4.1 To write out data objects to POOL

To illustrate the job options for writing, we use RecExCommon_jobOptions.txt as an example:

Listing 6.14 RecExCommon_jobOptions.txt

//--

// now write out Transient Event Store content in POOL

//--

//

#include "AthenaPoolCnvSvc/WriteAthenaPool_jobOptions.txt"

// check dictionary

#include "$ATHENASEALSVCROOT/share/AthenaSealSvc_joboptions.txt"

AthenaSealSvc.CheckDictionary = true;

// Define the output Db parameters (the default value are shown)

PoolSvc.Output = "SimplePoolFile.root";

// PoolSvc.DbServer = "db1.usatlas.bnl.gov";

// PoolSvc.DbAccount = "athena";

// PoolSvc.DbPassword = "";

// PoolSvc.DbType = "mysql";

// PoolSvc.ConnectionType = "MySQLCollection";

// PoolSvc.FullConnection =

"mysql://athena:insider@db1.usatlas.bnl.gov/pool_collection";

PoolSvc.DbType = "root"; // to define ROOT file resident collection

PoolSvc.Collection = "NewPoolTry";

// Converters:

#include "EventAthenaPool/EventAthenaPool_joboptions.txt"

#include "RecAthenaPool/RecAthenaPool_joboptions.txt"

// list of output objects key

// MissingET

Stream1.ItemList+={"3052#*"};

// EventInfo

Stream1.ItemList+={"2101#*"};

// SimpleTrackCollection

Stream1.ItemList+={"10003101#*"};

//--

// switch off the writing

//ApplicationMgr.OutStream = { };

page 74

6.2.4.2 To read back data objects from POOL

To illustrate the job options for reading, we use RecExCommon_read_jobOptions.txt as an example:

6.2.5 caveats, problems and work-arounds

o Storing pointers to objects require polymorphic classes: For classes which contain pointers to other

objects, the classes of these objects must be polymorphic, i.e. they must have a virtual table. The

simplest way to enforce this is to add a virtual destructor. For example:

class SimpleTrackCollection : public DataVector {

public:

 virtual ~SimpleTrackCollection() {};

};

and

class SimpleTrack {

Listing 6.15 RecExCommon_jobOptions.txt

//--

// Load POOL support

//--

#include "AthenaPoolCnvSvc/ReadAthenaPool_jobOptions.txt"

ApplicationMgr.DLLs += { "HbookCnv"};

// Define the input Db parameters (the default value are shown)

// PoolSvc.Output = "SimplePoolFile.root";

// PoolSvc.DbServer = "db1.usatlas.bnl.gov";

// PoolSvc.DbAccount = "athena";

// PoolSvc.DbPassword = "";

// PoolSvc.DbType = "mysql";

// PoolSvc.ConnectionType = "MySQLCollection";

// PoolSvc.FullConnection =

"mysql://athena:insider@db1.usatlas.bnl.gov/pool_collection";

// PoolSvc.Collection = "NewPoolTry";

PoolSvc.DbType = "root"; // to define ROOT file

resident collection

EventSelector.InputCollection = "NewPoolTry";

// Converters:

#include "$EVENTATHENAPOOLROOT/pool/EventAthenaPool_joboptions.txt"

#include "$RECATHENAPOOLROOT/pool/RecAthenaPool_joboptions.txt"

// all object on input files are read-in by default

//---

page 75

Chapter 6 Data dictionary Version/Issue: 8.0.0

public:

 // ...

 // destructor

 virtual ~SimpleTrack(){};

 // ...

};

Here SimpleTrackCollection itself is the "data object" to be saved and thus must be polymorphic. And a

DataVector is actually a collection of pointers to T, so SimpleTrack must be polymorphic as well.

 Another important implication of the polymorphic requirement is that one may NOT have a class with

a pointer to an STL collection. For example, the following is not allowed:

class SimpleTrack {

public:

 // ...

private:

 // Pointer to vector of hits:

 std::vector<HitOnTrack*>* m_hits;

};

Rather one must use collections "by value":

class SimpleTrack {

public:

 // ...

private:

 // vector of hits "by value":

 std::vector<HitOnTrack*> m_hits;

};

The reason for this is simply that the STL collections do not have virtual tables and thus are not

polymorphic.

¥ Default constructor must not be private: POOL creates objects using the default constructor and then

"fills" them by doing a memory copy of the data being read in (i.e. streaming). One consequence of this

is that you will get a runtime error for classes where the default constructor has been made private.

¥ Too many classes with "id" defined: only the "data object" should have an id provided in the selection

file. Otherwise pool complains when trying to write out the object. For example:

 <class name="SimpleTrackCollection" id="9E3595D6-1362-429A-8BA2-3396C93D6BA0"

/>

 <class name="SimpleTrack" id="23EF4872-EBFB-45E7-A256-34FDF223C10E" />

 Only SimpleTrackCollection should have an id.

¥ Renaming POOL output files: What you should NOT do: Rename the first output file,

SimplePoolFile.root, to something else, then try to recreate SimplePoolFile.root in a second job. This

will create two physcial files with the same file ID, which will cause trouble when reading.

page 76

 If you do not want to modify the jobOpt when you run the second job, and you want to rename the

output file after the first job, you should do the following:

 > mv SimplePoolFile.root AnotherPoolFile.root

 > FCrenamePFN -p SimplePoolFile.root -n AnotherPoolFile.root

 Then run the second job. After the second job, you can do the following:

 > mv SimplePoolFile.root YetAnotherPoolFile.root

 > FCrenamePFN -p SimplePoolFile.root -n YetAnotherPoolFile.root

 You can read the files (using implicite collections) with the following line:

 EventSelector.InputCollections = {

 "AnotherPoolFile.root",

 "YetAnotherPoolFile.root"

 };

 in your jobOptions.

¥ Sharing POOL output files with other people: What you should NOT do: Copy only the data files,

and forgot to copy the PoolFileCatalog.xml.

 If you want to give your output to other people to read, all the POOL output files (*.root), and the

PoolFileCatalog.xml should be copied over to the other person’s run directory. The same read

jobOption can be run from the other person’s run directory.

 If you use the absolute path in the write job, for example:

 PoolSvc.Output =

"/afs/cern.ch/atlas/maxidisk/d73/7.5.0/SimplePoolFile.root";

and the files are accessible by the other user, then no copying of the root data files are needed. Just copy

the PoolFileCatalog.xml. Note that in this case, the files specified for InputCollections should have the

absolute path too

page 77

Chapter 7 Detector Description Version/Issue: 8.0.0

Chapter 7

Detector Description

7.1 Overview

The ATLAS detector description is based upon the GeoModel geometry modeller. A more detailed

version of this chapter is available online at:

http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/detector_description/Geometry%20Kernel%20C

lasses.doc

In particular, that document contains the full reference manual describing the classes in the Geometry

Kernel.

7.2 About the Geometry Kernel Classes.

The geometry kernel classes are provided by the package GeoModelKernel. These classes provide

a set of geometrical primitives for describing detectors, and a scheme for accessing both the raw

geometry of a detector and arbitrary subsystem-specific geometrical services. The scheme provides a

means of keeping the geometrical services synched to the raw geometry, while incorporating

time-dependent alignments. It also allows one to version the geometry of any subsystem.

The design of these classes reflects the belief that raw geometry is highly constrained by the simulation

engines, while the readout geometry is highly subsystem specific and has practically no constraint at

all. The description of both types of geometry is normally to be carried out by a subsystem specialist.

This specialist is asked to extend objects called GeoVDetectorElement,

GeoVDetectorManager, and GeoVDetectorFactory, by writing subclasses describing both

the raw and readout geometry of his or her subsystem.

page 78

Thus, the simulation engines available today (Geant3 and Geant4), which fortunately have a high

degree of conceptual commonality, basically determine the format of the raw geometry. Every

subsystem engineer who is responsible for describing a subdetector needs to provide one or more trees

of raw geometry for the purpose of simulation. These tasksÑcreating and accessing raw geometry--

are required methods of the three basic base classes. The geometry kernel classes provide a set of

geometrical primitives to support these operations..

In addition, the subsystem engineer has to layer, upon this raw geometry, any detector specific readout

services required in simulation, reconstruction, or analysis. This is a very broad task and relies heavily

on the creativity and intelligence of the subsystems specialist. The specialist is asked only to provide

access to this type of information through the same class (GeoVDetectorManager) that accesses

the raw geometry.

The set of GeoVDetectorFactories are then all called upon during the initialization phase to

build both raw and readout geometries. During normal execution, messages to move various pieces of

material to new, aligned positions will be routed from the calibration database to the detector managers

which must respond by applying new alignment transformations at specific points in the geometry tree

designated as alignable. The position of one or more pieces of raw geometry moves about when the

alignable transformations are tweaked.

Readout geometry synchronizes itself to raw geometry by holding a pointer to a volume in the raw

geometry tree that holds its absolute transformation with respect to world coordinates in cache. The

readout geometry should access this information when responding to any queries about, or relying

upon, its absolute position.

Thus the detector managers have a dual function: they describe the geometry (potentially misaligned)

to the simulation, and they serve as a central store of detector-specific geometrical information which is

accessed throughout Athena-based applications in ATLAS.

The interface to this information is largely up to the subsystem engineer. The

GeoVDetectorFactories for each subsystem are called upon during the initialization of a service

(GeoModelSvc) to construct geometry through a method called create(). They must provide

access to the volumes so created, for the purpose of simulation. The GeoModelSvc then makes the

GeoVDetectorManagers available to a variety of different clients.

7.3 Examples

In this section we give a few simple examples of how to use the geometry kernel. First, we illustrate

how to get the information into the transient representationÑthis is the job of the subsystem engineer ,

for whom this section will be very important. Second, we illustrate how to get the information out of

the transient representationÑthis will be important mostly for the individual who passes the description

along to a procedure such as Geant3 or Geant4.. or one of may reconstruction tasks.

page 79

Chapter 7 Detector Description Version/Issue: 8.0.0

7.3.1 Example 1: Getting the data into the transient represention.

In this section we provide and illustrate a simple GeoVDetectorFactory subclass called a

ToyDetectorFactory. This code describes a geometry that has 100 rings contained within a

square box. The ToyDetectorManager contains two different types of readout elements:

CentralScrutinizers, and ForwardScrutinizers. The header file for

ToyDetectorFactory is shown in Listing 7.1:

From the header file, one can see that the subsystem engineer has created a class called

ToyDetectorFactory, that derives from the class GeoVDetectorFactory, which is the base class for all

subsystem-specific detector geometry factories. The ToyDetectorFactory is required to provide the

following methods (because the base class declares them to be abstract functions):

 virtual void create(GeoPhysVol *world);

Which builds the geometry within a containing physical volume (world volume).

Listing 7.1 Header file for ToyDetectorFactory

#include "GeoModelKernel/GeoVDetectorFactory.h"

#include "GeoModelExamples/ToyDetectorManager.h"

class ToyDetectorFactory : public GeoVDetectorFactory {

 public:

 // Constructor:

 ToyDetectorFactory();

 // Destructor:

 ~ToyDetectorFactory();

 // Creation of geometry:

 virtual void create(GeoPhysVol *world);

 // Access to the results:

 virtual const ToyDetectorManager * getDetectorManager() const;

 private:

 // Illegal operations:

 const ToyDetectorFactory & operator=(const ToyDetectorFactory &right);

 ToyDetectorFactory(const ToyDetectorFactory &right);

 // The manager:

 ToyDetectorManager *detectorManager;

};

page 80

The detector manager is returned from the factory and holds the entire geometry description for the

subdetector. The header file for ToyDetectorManager is shown in Listing 7.2:

One sees from the interface that the manager is essentially a class that permits one to add and retrieve

bits of detector description. Two methods, getNumTreeTops() and getTreeTop(unsigned

int i), are required and are used to access the number of top-level physical volumes in the system

and allow one to access sequentially each top-level physical volume. Physical volumes, essentially, are

positioned pieces of material with specific shape and composition. They are explained below in more

detail. The raw geometry is organized in a treelikle structure, and the detector managers must provide

Listing 7.2 Header file for ToyDetectorManager

#include "CLIDSvc/CLASS_DEF.h"

class ToyDetectorManager;

CLASS_DEF(ToyDetectorManager, 9876, 1)

#include "GeoModelKernel/GeoVPhysVol.h"

#include "GeoModelKernel/GeoVDetectorManager.h"

#include "GeoModelExamples/CentralScrutinizer.h"

#include "GeoModelExamples/ForwardScrutinizer.h"

class ToyDetectorManager : public GeoVDetectorManager

 public:

 enum Type {CENTRAL, FORWARD};

 // Constructor

 ToyDetectorManager();

 // Destructor

 ~ToyDetectorManager();

 // Access to raw geometry:

 virtual unsigned int getNumTreeTops() const;

 // Access to raw geometry:

 virtual PVConstLink getTreeTop(unsigned int i) const;

 // Access to readout geometry:

 const ForwardScrutinizer * getForwardScrutinizer(unsigned int i) const;

 // Access to readout geometry:

 const CentralScrutinizer * getCentralScrutinizer(unsigned int i) const;

 // Access to readout geometry:

 unsigned int getNumScrutinizers(Type type) const;

 // Add a Tree top:

 void addTreeTop(PVLink);

 // Add a Central Scrutinizer:

 void addCentralScrutinizer(const CentralScrutinizer *);

 // Add a Forward Scrutinizer:

 void addForwardScrutinizer(const ForwardScrutinizer *);

 private:

 [...]

};

page 81

Chapter 7 Detector Description Version/Issue: 8.0.0

the top-level branch in the tree. The third method in the toy detector node creates the tree of volumes.

We shall see in detail how, shortly.

The last three methods are not required but are provided by the subsystem engineer to describe pieces

of readout or other detector-related geometrical information.

 unsigned int getNumScrutinizers(Type type) const

 const ForwardScrutinizer *getForwardScrutinizer(unsigned int i) const

 const CentralScrutinizer *getCentralScrutinizer(unsigned int i) const

The last three methods give access to readout geometry. The basic pieces of readout geometry in the

ToyDetectorManager are called ForwardScrutinizer and CentralScrutinizer. They derive from a base

class called GeoVDetectorElement, which stores and provides access to a pointer to a

GeoFullVPhysVol (this is a physical volume with an absolute global-to-local coordinate transformation

in cache).

What kind of geometrical object are the scrutinizers? They are meant to illustrate pieces of detector

with both material and readout properties. For example, in the inner detector, instead of a ÒScrutinizerÓ

one would create perhaps a pixel detector, giving the pixel detector the properties of readout pitch along

local x and y, number of channels in x and y, and perhaps a multiplexing scheme. The vectors normal to

the each side of the pixel detector could be provided through the pixel detectorsÕs interfaceÑif that is a

useful geometrical service for the pixel detector to provideÑand could be computed from the

full physical volumes absolute global-to-local coordinate transformation information. In the case of a

calorimeter, the ÒScrutinzersÓ would be replaced with a class describing a calorimeter module that

could describe the peculiar way in which signals were summed within the calorimeter slices. And so

forth.

Looking again at the interface to ToyDetectorManager and Factory: we wish to disable

copying and assignment so we make these methods private and leave them unimplemented. We also

declare some private member data required to carry out the services described above: a vector to hold

the top level physical volumes, and two more to hold the lists of forward and central scrutinizers. Next

we shall see how to implement this detector factory.

The implementation of the ToyDetectorFactory is shown in Listing 7.3. Note how the factory

creates both raw geometry and readout geometry and puts it in the manager. In principal, one can tailor

the code so that the detector factory itself determines the shape of the whole detector geometry, so that

alternate geometries can be constructed simply by creating different types of factories and using them at

run time.

The ToyDetectorFactory shown in Listing 7.3 is a simplified version of actual code that can be

found in the Atlas repository. This simplified version does not contain illustration of certain advanced

featuresÑnamely , access to the material manager, interface to Athena, insertion of the managers within

page 82

Storegate, and parametrization of volumes using GeoSerialTransformer —that are present in the

full version.

7.3.2 Example 2: Getting the data out of the transient representation.

This example is missing.

Listing 7.3 Implementation of ToyDetectorFactory

 #include "GeoModelExamples/ToyDetectorFactory.h"

 #include "GeoModelExamples/CentralScrutinizer.h"

 #include "GeoModelKernel/GeoMaterial.h"

 #include "GeoModelKernel/GeoBox.h"

 #include "GeoModelKernel/GeoTube.h"

 #include "GeoModelKernel/GeoLogVol.h"

 #include "GeoModelKernel/GeoNameTag.h"

 #include "GeoModelKernel/GeoPhysVol.h"

 #include "GeoModelKernel/GeoFullPhysVol.h"

 #include "GeoModelKernel/GeoTransform.h"

 #include "GeoModelKernel/GeoSerialDenominator.h"

 #include "GeoModelKernel/GeoAlignableTransform.h"

 ToyDetectorFactory::ToyDetectorFactory()

 :detectorManager(NULL){}

 ToyDetectorFactory::~ToyDetectorFactory()

 {}

 const ToyDetectorManager * ToyDetectorFactory::getDetectorManager() const {

 return detectorManager;

 }

 //## Other Operations (implementation)

 void ToyDetectorFactory::create(GeoPhysVol *world)

 {

 detectorManager=new ToyDetectorManager();

//--//

// Get the materials that we shall use (material manager from Storegate!) //

//--//

 const GeoMaterial *air = materialManager->getMaterial("std::Air");

 const GeoMaterial *poly =

 materialManager->getMaterial("std::Polystyrene");

 // Next make the box that describes the shape of the toy volume:

 const GeoBox *toyBox = new GeoBox(800*cm,800*cm, 1000*cm);

page 83

Chapter 7 Detector Description Version/Issue: 8.0.0

7.4 An Overview of the Geometry Kernel

In this section we give a short overview of all of the pieces of the geometry kernel. These pieces are

described in detail in the online manual. In this section our goal is to describe the Òbig pictureÓ. The

GeoModel class tree is shown in Figure 9.1.

Many of the classes in the library represent objects which are reference counted; these all inherit from

RCBase. Others represent geometrical shapes; these inherit from GeoShape. Others represent

objects that can be assembled into a geometry graph; these inherit from GeoGraphNode.

7.4.1 The Detector Store Service and Detector Managers

The detector store service is not part of GeoModel per se, but rather an interface from GeoModel to

Athena and Storegate. It is a Storegate service running within Athena and providing access to all

detector information. The service can be accessed in the following way, which is typical of all

Storegate services:

 StoreGateSvc *detStoreSvc;

Figure 7.1 The GeoModel Class Tree

RCBase----GeoLogVol

 |---GeoMaterial

 |---GeoElement

 |---GeoShape--------GeoShapeSubtraction

 | |-----GeoShapeIntersection

 | |-----GeoShapeUnion

 | |-----GeoShapeShift

 | |-----GeoBox

 | |-----GeoCons

 | |-----GeoPara

 | |-----GeoPgon
 | |-----GeoTrap

 | |-----GeoPCon

 | |-----GeoTube

 | |-----GeoTrd

 |

 |--GeoGraphNode-----GeoNameTag

 |-----GeoSerialDenominator

 |-----GeoTransform-----------GeoAlignableTransform

 |-----GeoVPhysVol------------GeoVFullPhysVol-------GeoFullPhysVol

 | |-----------GeoPhysVol

 |

 |-----GeoSerialTransformer

GeoNodeAction---------GeoCountVolAction

 |---------GeoAccesssVolumeAction

 |---------GeoClearAbsPosAction

GeoVolumeAction-------TemplateVolAction

And also:

GeoPath, GeoTraversalState, Query<class T>, GeoAbsPosInfo, GeoXF::Pow

page 84

 StatusCode status = service(ÒDetectorStoreÓ,detStoreSvc);

The service hold several important objects. The first is the world physical volume, the common

ancestor of all physical volumes within the system. This object has type GeoModelExperiment, which

is a Storegate-compatible physical volume. It can be accessed like this:

 const DataHandle<GeoPhysVol> world;

 StatusCode status = detStoreSvc->retrieve(world,ÓATLASÓ);

From there, one may navigate the physical volume tree. The other objects that one can access through

the detector store are the detector nodes, which are the master copy of all readout information. For

example, for the liquid argon calorimeter, this might look like this:

 const DataHandle<AbsLARDetectorNode> *laRNode;

 StatusCode status = detStoreSvc->retrieve(laRNode,ÓLArÓ);

The strings used to retrieve detector nodes are assigned subsystems engineers. No catalogue can be

published at this time. The detector factories are created by an interface called a tool, which instantiates

the detector, and causes it to build its geometry within the world physical volume, and then also records

the readout geometry within the detector store. The class ToyDetectorTool provides an example.

It is in the source tree, under DetectorDescription/GeoModel/GeoModelExamples.

7.4.2 Material Geometry

Material geometry consists of a set of classes that bears a large resemblance to the material geometry

within some flavour of GEANT. These classes, however, are designed to take a minimal size in

memory. This requirement determines the basic data structure used to hold the data for the geometry

description. That structure is a graph of nodes consisting of both volumes and their properties. The tree

is built directly and accessed in a way that provides users access to volumes and, simulataneously, to

the properties accumulated during graph traversal that apply to the volumes. See the Actions section,

below.

The requirement of minimizing the memory consumption has led us to foresee a system in which

objects (as well as classes) in the detector description can be re-used. This is called shared instancing,

and is described below. It essentially means that an element, compound, volume, or entire tree of

volumes may be referenced by more than one object in the detector description. Shared instancing can

make the deletion of objects difficult unless special measures are taken. We have used a technique

called reference counting in order to facilitate clean-up and make it less error prone. Using that

technique, objects can be created using operator new. The memory is then freed when some action is

taken to clean up near the top of the tree. See the section How Objects are Created and Destroyed.

Before creating hierarchies of volumes representing positioned pieces of detectors, we need to create

lower level primitives, such as elements, materials, and shapes. So, we will discuss these first.

page 85

Chapter 7 Detector Description Version/Issue: 8.0.0

7.4.3 Materials

Materials are represented within the geometry kernel class library by the class GeoMaterial, and are

built up by combining different elements, specifying each element and its fraction-by-mass. Material

constants such as the radiation length and the interaction length, as well as constants for ionization

energy loss, are available through the interface but do not need to be provided to the constructor.

Instead, they are computed from the materialÕs element list.

The class GeoElement is used to represent elements. Their constructor requires a name, symbol, and

effective Z and A. These properties can also be retrieved from the element.

GeoMaterial objects are created by specifying a name and a density. The material is ÒemptyÓ until

elements are added, one by one, using the add() method, which is overloaded so that one may provide

either elements or prebuilt materials. After all materials are added, the lock() method must be called,

which prevents further elements or materials from being added.

Material classes, as well as all other classes, use the CLHEP Units wherever applicable. One should

normally give units when specifying densities, lengths, volumes, or other quantities in the methods of

all of the classes in this library. Therefore, when specifying water, one should use a constructor call like

this:

 GeoMaterial *water = new GeoMaterial(ÒH20Ó, 1.0*gram/cm3);

The CLHEP Units are described on the CLHEP web page . To finish constructing this material, water,

one needs to follow the constructor with the following lines:

 GeoElement *hydrogen = new GeoElement(ÒHydrogenÓ,ÒHÓ,1.0, 1.010);

 GeoElement *oxygen = new GeoElement(ÒOxygenÓ, ÒOÓ, 8.0, 16.0);

 water->add(hydrogen,0.11);

 water->add(oxygen,0.89);

 water->lock();

The materials are then used to together with shapes to form logical volumes, discussed below.

7.4.3.1 Shapes

Shapes are created using the new operator. Essentially, shapes within this system are required to store

and provide access to the geometrical constants that describe their geometrical form. This data is,

insofar as possible, to be specified on the constructor.

Shapes are extensible and we intend to service requests for extensions, by providing custom shapes to

valued customers on request .

Listing 7.4 illustrates how one builds a box.

Listing 7.4 How to build a box

 double length=100*cm, width=200*cm, depth=33*cm;

 GeoBox *box = new GeoBox(length, width, depth);

page 86

Most objects can be constructed along similar lines; exceptions are objects with multiple planes such as

polycones and polygons; their interface allows one to add planes successively. For the polycone, for

example, the shape is built as shown in Listing 7.5.

This creates a polycone whose projection subtends an angle of 10 degrees between 40 degrees and 50

degrees, with planes at z=0, z=10, and z=15, with minimum and maximum radii there of (5,10), (6, 12),

and (5,10).

The shapes can provide their data to a client through their accessors, and in addition support several

other operations. Boolean operations on shapes are possible. They can be accomplished through

Boolean operators in class GeoShape:

 GeoShape * donut = new GeoTube();

 GeoShape * hole = new GeoTube();

 const GeoShape & result = (donut->subtract(*hole));

The result of a Boolean operation is a shape in a boolean expression tree that can, for example, be

decoded when the geometry is declared to GEANT.

Another method that shapes can carry out is to compute their volume. This is useful in the context of

mass inventory, in which the mass of the detector model is computed, usually for the purpose of

comparing with an actual installed detector. One needs to call the .volume() method which is

defined for all shape types.

Finally, we mention a type identification scheme for shapes. The scheme relies on two static and two

virtual methods which together can be used as follows:

 // Test if the shape is a box:

 if (myShape->typeId()==GeoBox::classTypeId()) {

 }

The methods typeId() and classTypeId() return unsigned integers, making the type

identification very fast. Alternately one can use the methods type() and classType(), which

work in the same way, except that these methods return std::strings: ÒBoxÓ, ÒT ubs,Ó ÒCons,Ó etc.

Listing 7.5 How to build a polycone

 double dphi=10*degrees, sphi=40*degrees;

 GeoPcon *polycone=new GeoPcon(dphi,sphi);

 double z0=0.0, rmin0=5, rmax0=10.0;

 polycone->addPlane(z0,rmin0,rmax0);

 double z1=10.0, rmin1=6, rmax1=12.0;

 polycone->addPlane(z1,rmin1,rmax1);

 double z2=15.0, rmin2=5, rmax2=10.0;

 polycone->addPlane(z1,rmin1,rmax1);

page 87

Chapter 7 Detector Description Version/Issue: 8.0.0

7.4.3.2 Logical Volumes

Logical volumes represent, conceptually, a specific manufactured piece that can be placed in one or

more locations around the detector. A logical volume is created by specifying a name tag for the

volume, a shape, and a material:

const GeoLogVol *myLog = new GeoLogVol("MyLogVol",

 myShape,

 gNitrogen);

7.4.3.3 Physical Volumes and the Geometry Graph

Having created elements, materials, shapes, and logical volumes, you are now ready to create and

locate placed volumes called physical volumes. Before you start, you will need to know that there are

two kinds of these:

¥ Regular Physical Volumes, designed to be small.

¥ Full Physical Volumes, designed to hold in cache complete information about how the volume

is located with respect to the world volume, its formatted name string and other important

information.

There is a common abstract base class for all of these: GeoVPhysVol. In addition both the full

physical volumes have another layer of abstraction, GeoVFullPhysVol, in order to allow us to

introduce parametrized volumes in the near future. All physical volumes allow access to their children.

The concrete subclasses that you have at your disposition for detector description are called

GeoPhysVol and GeoFullPhysVol. Both of these have a method to add either volumes or

volume properties.

 GeoPhysVol *myVol;

 myVol->add(aTransformation);

 myVol->add(anotherVolume);

When you add a transformation, you change the position of the subsequent volume with respect to the

parent. If you add no transformation, you will not shift the daughter relative to the parent and

commonly will create a daughter which is centered directly in the parent. If you add more than one

transformation to the volume before adding a parent, they will be multiplied. The last transformation to

be added is applied first to the child. Transformations are discussed next. Like logical volumes, they

may be shared.

Like physical volumes, transformations come in two types:

¥ Regular transformations, designed to be small.

¥ Alignable transformations, which allow one to add a misalignment to the system. Misaligning

a transformation changes the position of all volumes ÒunderÓ the transformation and clears the

absolute location caches of all full physical volumes.

When you create a transformation you must choose the type.

page 88

The model of the raw geometry is a tree of nodes, property nodes and volume nodes. The tree can be

thought of as as tree of volumes, each one ÒhavingÓ a set of properties (inherited from property nodes

throughout the tree). The subsystem engineer judiciously chooses which of the volumes are to contain

full, cached, position information — usually, these first-class volumes are to be associated with a

detector. He or she also judiciously decides which of the transformations are to be alignableÑusually

these are the transformations which position something that ultimately has a detector bolted, glued,

riveted or otherwise clamped onto a sensitive piece. Then, a GeoVDetectorFactory which builds the

geometry keeps track of these pointers so that it may connect the important volumes to detector

elements and that it may connect the alignable transformations to the alignment database for periodic

updating.

Finally, we provide three mechanisms for giving names to volumes:

¥ Do nothing. The volume will be called ÒANONÓ.

¥ Add a GeoNameTag object to the graph before adding a volume. The next volume to be

added will be given the GeoNameTagÕs name.

¥ Add a GeoSerialDenominator object to the graph before adding more volumes. The

volumes will be named according to the base name of the GeoSerialDenominator, plus

given a serial number 0, 1, 2, 3É..

In effect this last method can be thought of as a way of parametrizing the name of the volume.

7.4.3.4 Actions

There are two ways of getting raw geometry information out of the model. Suppose that one has access

to a particular physical volume (it could be the ÒWorldÓ physical volume).

One can access its children, there names, and their transformations with respect to the parent in the

following way:

 PVConstLink myVol;

 for (int c=0; c< myVol->getNChildVols();c++) {

 PVConstLink child = myVol->getChildVol(c);

 HepTransform3D xf = myVol->getXToChildVol(c);

 }

One could then iterate in a similar way over the grand children, by using a double loop. Ultimately one

would probably to visit all the volumes, whatever their depth in the tree, so probably this would call on

some form of recursion. An easy way would be to embed the small sample of code shown above in a

recursive subroutine or method. That would be fine, and is conceptually simple. However, within the

geometry modelÕs kernel, we have provided an alternate, probably better way to visit the entire tree.

That mechanism involves a GeoVolumeAction. A GeoVolumeAction is a way (for applications

programmers) to obtain recursive behavior without writing any recursive routines. ItÕs a class with a

handler routine (handleVPhysVol) which is called for each node before (or after) it is called on its

children. This can descend to an arbitrary depth in the tree. The GeoVolumeAction is an abstract

base class and should be subclassed by programmers to suit their needs. Another class

page 89

Chapter 7 Detector Description Version/Issue: 8.0.0

TemplateVolAction is provided as a template that one can take and modify. To run it, one does

this:

 PVConstLink myVol;

 TemplateVolAction tva;

 myVol->apply(&tva);

The handleVPhysVol within the TemplateVolAction is where the work is supposed to get

done. It will be invoked repeatedly, once for each node in the tree. Within that routine, one can access

the physical volume as a subroutine parameter, and information about the transformation and the path

to the node through the base class for actions, GeoVolumeAction. The action can be designed to

run from the bottom up or from the top down.

Incidentally, there is another kind of action in the library called GeoNodeAction.

GeoNodeActions visit all nodes (including naming nodes, transformation nodes, and perhaps other

property nodes that may be added later to the model) Since usually an application programmer wants to

see volumes and their properties, the GeoVolumeAction is more suited to casual users than the

GeoNodeAction, which is considered mostly internal. However the usage is similar, except that

node actions are ÒexecÕdÓ while volume actions are ÒappliedÓ. Here for example is how we can rewrite

the loop over children using volume actions:

 PVConstLink myVol;

 for (int c=0; c< myVol->getNChildVols();c++) {

 GeoAccessVolumeAction av(c);

 myVol->exec(&ac);

 PVConstLink child = ac.getVolume();

 HepTransform3D xf = ac.getTransform();

 }

This, it turns out, will execute faster than the loop shown above, which (internally) will run the action,

twice: once, in order to locate the daughter volume and then a second time, to locate its transform.

7.4.3.5 How Objects are Created and Destroyed

We now come to the important topic of how objects in this system are created and destroyed. The

geometry kernel uses a technique called reference counting. Reference counting, shortly stated, is a

way to perform an automatic garbage collection of nodes that are no longer in use. This is important

when describing a large tree of information, much of which is ideally to be sharedÑused again and

again in many places.

You may have noticed, in the section Ò Example 1: Getting the data into the transient represention.Ó that

many of the objects have been created using operator new. You may have also noticed, if youÕve tried

to play around with the kernel classes, that statements which allocate most kernel classes on the stack,

such as:

 GeoBox box(100, 100, 100);

are not allowed. Who is going to clean up the memory after all these new operations? And why does

the compiler disallow allocation on the stack?

page 90

LetÕs look again at Example 1, especially at these lines shown in Listing 7.6.

Each of the three objects (worldBox, worldLog, and worldPhys) are created with a reference count.

WorldBoxÕs is initially zero, at the time it is created. WorldLogÕs is also zero when it is created.

However, when worldVol is created, the reference count of worldBox increases to one, since now it is

referenced somewhereÑnamely by the logcal volume worldLog. We can diagram this sequence in the

following way:

Now, when the physical volume worldPhys is created, the reference count of the logical volume will

increase to oneÑsince it is used once by a single physical volume.

Each time a physical volume is positioned within another physical volume, its reference count

increases. Suppose we look now at a sub-tree of physical volumes that is used five times. At a run

boundary, it may happen that a piece of the tree is torn down. When the first node referencing the

physical volume is destroyed, it decreases the volumes reference count, from five to four. When the

next node referencing the physical volume is destroyed, the reference count goes from four to three.

And so forth.

When the very last node referencing the physical volume is destroyed, this means that the physical

volume itself has outlived its usefulness and should disappear. And that is what happens. The

destruction of objects is carried out automatically when the reference count falls to zero. And in fact,

the only way to delete an object is to arrange for all of its references to disappear. This is because the

destructor of all reference counted objects is private.

This scheme applies to elements, materials, shapes, logical volumes, physical volumes, full physical

volumes,

So far, we have described what happens to an object when it is no longer used by any other node in the

tree. However, what about the top of the tree, which has no nodes that refer to it? Since the destructors

of our physical volumes are private, how do you arrange to get it to go away?

Reference counts can also be manipulated manually, by using the methods ref() and unref(). The

physical volume at the head of the tree, often known as the ÒworldÓ physical volume, can be referenced

manually using this call:

 worldPhys->ref(); //reference count goes from 0 to 1.

Later, you can destroy the world volume and trigger a global collection of garbage by using this call:

 worldPhys->unref();//reference count goes from 1 to 0.

Listing 7.6 Object creation

 const GeoBox *worldBox = new GeoBox(1000,1000, 1000);

 const GeoLogVol *worldLog = new GeoLogVol("WorldLog",

 worldBox, gNitrogen);

 GeoPhysVol *worldPhys = new GeoPhysVol(worldLog);

page 91

Chapter 7 Detector Description Version/Issue: 8.0.0

When this happens the world physical volume deletes itself, decreasing the reference counts of it

logical volumes and any children. These will then begin dereferencing and possibly deleting their own

children, until all the memory has been freed.

Suppose now, that you want to arrange for a node to not be deleted automatically in this fashionÑeven

when nobody references it any more. In order to do this, simply call the ref() method on this object.

That way, the reference counts starts at 1 and will not fall to zero until you call unref(), manually.

7.4.4 Detector Specific Geometrical Services

Detector specific geometrical services are known to some as Òreadout geometryÓ. This consists, first

and foremost, of geometrical information that is not declared directly to the tracing engines, G3, for

example, or G4. Examples would include: projective towers within a calorimeter, or implant regions

within a piece of silicon. Information such as the position of the boundaries of these regions is not

required in the simulation of basic physics processes, though it certainly is required in the digitization,

and possibly hit-making phase of simulation.

Detector-specific geometrical services can and should include services that derive from the basic raw

and readout geometry of the detector. Such services could include point-of-closest-approach

calculations, global-to-local coordinate transformations, calculations that compute the total number of

radiation lengths within a cell, et cetera. Additionally they could include nearest-neighbor calculations,

hopefully in a highly detector specific way which is meaningful in the context of specific algorithms.

We have intended that this kind of service would be provided by the subsystem engineer, or somebody

with an intimate knowledge of both the detector geometry and the requirements of hit simulation and/or

reconstruction in the detector. This kind of service, ideally, would be spread across at least two classes.

The first place is in the detector element. The detector element (subclass of

GeoVDetectorElement) has a required association with a piece of material geometry, and has

access to that piece. The rest of the interfaceÑall of the geometrical services discussed above, such as

the boundaries of implant layers, strip pitches, whatever, can be placed in the detector element.

The second place where detector specific geometrical services may be placed is in the interface to the

the detector manager (subclass of GeoVDetectorManager), which constructs and manages all raw

and readout geometry. This class should provide a fast mechanism for accessing the detector elements

that it managesÑsuch as detector -specific, array-based random access. Other services, such as

returning the maximum and minimum range of some array index (phi, eta, etc.) may also be

appropriate.

So in general the subsystems people have a lot of flexibility, but need to devise an interface to both the

detector manager and the detector element that satisfies their needs. The exact layout of these classes is

hopefully the object of some design on the part of the engineer, can evolve with experience to involve a

larger category of collaborating classes1. The basic framework requires only that 1) detector factories

1. In certain CDF subdetectors, for example, all questions involving numerical limits to array boundaries were ultimately

handled separately by "numerology" classes, available through the detector node.

page 92

create a physical volume tree, 2) they associate readout elements to certain physical volumes, and 3)

additional readout information appear in the interface to the detector manager and the detector element.

7.4.5 Alignment

There are two alignment issues we need to address: first, how does the GeoModel propagate alignment

constants into the geometry description? Second, how is the subsystem engineer supposed to connect

the alignment constants to the database so that the geometry changes when the run conditions are

updated? The first issue concerns the way that GeoModel works, the second issue is mostly a policy

question and outside the scope of GeoModel, per se.

GeoModel has a natural way of putting alignment constants into the geometry description and a natural

way of getting them out. To put them it, one alters one or more GeoAlignableTransform objects

by changing its ÒDeltaÓ, or misalignment, which is a HepTransform3D. The misalignment is then

composed with the default transformation.

To get the alignment out of GeoModel, simply query a physical volume for its transformation. All

physical volumes have the notion of relative and absolute transformations, both default and

(mis)aligned. Full physical volumes cache the absolute transformation, making it immediately

available after the first request, while ordinary physical volumes compute it anew each time during tree

traversal. In either case, GeoModel methods supply an answer that correctly incorporates the effects of

misalignment.

In case of cached transformations, itÕs worthwhile to describe the mechanism by which the cache is

updated. First, when an alignable transform is altered, all parent physical volumes receive a message to

clear any caches. These messages are passed onto their daughter volumes, and any physical volume in

the geometry tree that contains a cache of absolute transformations is cleared. Then, as soon as some

client requests a transformation, it is recomputed recursively, starting from the first parent with valid

cache information, and again cached.

A piece of readout geometry (class GeoVDetectorElement) cannot be constructed without a full

physical volume. One constructed, it always has access to that volumeÕs transformation. Readout

geometry should respond to all queries relevant to absolute spatial positioning by referencing the

absolute transformation of the physical volume. See section 2.9 for more details.

Finally, how should the subsystem engineer arrange for the geometry to be updated when run

conditions change? The basic suggestion is to use the notification mechanisms of the calibration

database. In this scheme, engineer should arrange for the detector manager to receive a message when

some relevant database table has changed. The detector manager should then rescan the tables,

construct new ÒDeltaÕ sÓ for each alignable transform under its jurisdiction, and alter those transforms.

When updates occur, readout elements may be required to update any local cache of information that

derives, ultimately, from alignment constants. This can be arranged using the same notification

mechanism.

For the moment no documentation on the calibration database can be cited. The need for this

component is not considered urgent as of this writing.

page 93

Chapter 7 Detector Description Version/Issue: 8.0.0

7.4.6 On Memory Use

Some effort has been spent insuring that the memory used by the a geometry description can be made

small, and indeed, it is our belief that using the techniques made possible by this class library a

remarkably compact description of the geometry can be achieved. However a compact geometry will

not occur automatically. Users need to know what tricks are available, and need to apply them as

aggressively as possible.

If aggressive optimization of process size is done, across the board and from the beginning, we think

that the GeoModel geometry description could contribute a negligible amount to the overall process

size of a typical ATLAS executable.

This goal is worth working towards, for three reasons. First, if the process size is really negligible, then

ATLAS executables can instantiate and use the whole geometry description, including even material

geometry, at virtually no cost.

Second, it will mean that at GeoModel description could be kept alive even after the whole model has

been declared to a simulation engine, such as GEANT3/4.

Third, experience shows that process size becomes unmanageable in large-scale projects unless the

memory cost is carefully controlled from the beginning.

Here are some suggestions for how to minimize the size of the geometry description, in memory:

¥ Share instances of elements, materials, shapes, logical volumes and physical volumes, and

even transformations.

¥ Use full physical volumes and alignable transforms only where necessary.

¥ Do not give names to physical volumes that represent uninteresting, nondescript pieces of

material.

¥ In case you need to give names to physical volumes, use a serial denominator rather than

multiple name tags.

¥ Parameterize volumes where possible.

The best way of sharing instances of elements and materials is to create them within a dedicated service

and access that service, experiment-wide, for any materials that are required to construct the geometry.

Logical volumes and shapes should be simple to share if adequate care is taken. Shared instancing and

parameterization of physical volumes is limited mostly by the constraints that:

¥ Physical volumes representing active elements must be ÒfullÓ and distinct, since they exist to

cache an absolute position. This means that they must not be shared, or parameterized, nor

live in any branch of a physical volume tree which is shared or parameterized.

Finally, transformations could be shared by creating a bank of common transformations such as

common f rotations and reusing them instead of instantiating, say, a θ rotation hundreds of times.

When shared instancing of transformations works, however, parameterization will also usually work

and is generally a better solution. Note, parameterizing volumes in GeoModel does not mean that G4

parameterization must be used during simulation. We can and should make this optional.

page 94

Not all of the planned optimization tools are available in this release. Notably, parameterization of

shapes (as opposed to transformations, only) has not been implemented, and a compressed

representation for CLHEP transforms is not available. We foresee adding both of these features to the

library at a later date. The first feature will give certain clients more powerful parameterization

techniques, such as distortion fields which are needed ultimately by the liquid argon calorimeter

software; while the second feature will allow a global reduction in memory cost in a way which is

virtually transparent to the users.

page 95

Chapter 8 Histogram facilities Version/Issue: 8.0.0

Chapter 8

Histogram facilities

8.1 Overview

The histogram data store is one of the data stores discussed in Chapter 2. Its purpose is to store statistics

based data and user created objects that have a lifetime of more than a single event (e.g. histograms).

The usage of the original Abstract Interfaces for Data Analysis (AIDA) and Histogram Template

Library (HTL) is deprecated as of release 12.0.0. Instead, the histogram service (THistSvc) now allows

direct access to the underlying technology (ROOT). The service is described on the Atlas Wiki:

 https://uimon.cern.ch/twiki/bin/view/Atlas/AthenaFramework#ROOT_Histograms_and_NTuples_in_G

In brief: the user creates a ROOT histogram object on the heap, using new, then registers it with the

THistSvc, a pointer to which can be obtained through the service locator in the normal way. After

registration, the THistSvc will own the histograms, and it will take care of sharing, saving, and

retrieving them. For full details, see the Wiki above.

page 96

page 97

Chapter 9 N-tuple and Event Collection facilities Version/Issue: 8.0.0

Chapter 9

N-tuple and Event Collection facilities

9.1 Overview

The usage of the original Abstract Interfaces for Data Analysis (AIDA) and Histogram Template

Library (HTL) is deprecated as of release 12.0.0. Instead, the histogram service (THistSvc) now allows

direct access to the underlying technology (ROOT). The service is described on the Atlas Wiki:

 https://uimon.cern.ch/twiki/bin/view/Atlas/AthenaFramework#ROOT_Histograms_and_NTuples_in_G

In brief: the user creates a ROOT ntuple (any TTree or TTree derived) object on the heap, using new,

then registers it with the THistSvc, a pointer to which can be obtained through the service locator in the

normal way. After registration, the THistSvc will own the ntuples, and it will take care of sharing,

saving, and retrieving them. For full details, see the Wiki above.

page 98

page 99

Chapter 10 Framework services Version/Issue: 8.0.0

Chapter 10

Framework services

10.1 Overview

Services are generally sizeable components that are setup and initialized once at the beginning of

the job by the framework and used by many algorithms as often as they are needed. It is not desirable in

general to require more than one instance of each service. Services cannot have a ÒstateÓ because there

are many potential users of them so it would not be possible to guarantee that the state is preserved in

between calls.

In this chapter we describe how services are created and accessed, and then give an overview of the

various services, other than the data access services, which are available for use within the Athena

framework. The Job Options service, the Message service, the Particle Properties service, the Chrono

& Stat service, the Auditor service, the Random Numbers service, the Incident service and the

Introspection service are available in this release. The Tools service is described in <Tools Chapter>.

We also describe how to implement new services for use within the Athena environment. We look at

how to code a service, what facilities the Service base class provides and how a service is managed

by the application manager.

10.2 Requesting and accessing services

The Application manager only creates by default the JobOptionsSvc and MessageSvc. Other

services are created on demand the first time they are accessed, provided the corresponding DLL has

been loaded. The services in the GaudiSvc package are accessible in this way by default - these are the

default data store services (EventDataSvc, DetectorDataSvc, HistogramDataSvc,

NTupleSvc) and many of the framework services described in this chapter and in <Tools Chapter>

page 100

(ToolSvc, ParticlePropertySvc, ChronoStatSvc, AuditorSvc, RndmGenSvc,

IncidentSvc).

Additional services can be made accessible by loading the appropriate DLL, using the property

ApplicationMgr.DLLs in the job options file, as shown for example in Listing 7.6 on page 12.

Sometimes it may be necessary to force the Application Manager to create a service at initialisation (for

example if the order of creation is important). This can be done using the property

ApplicationMgr.ExtSvc . In the example below this option is used to create a specific type of

persistency service.:

Once created, services must be accessed via their interface. The Algorithm base class provides a

number of accessor methods for the standard framework services, listed on lines <line24> to <line35>

of <Listing 5.1> on <page??>. Other services can be located using the templated service function.

In the example below we use this function to return the IParticlePropertySvc interface of the

Particle Properties Service: The third argument is optional: when set to true, the service will be

created if it does not already exist; if it is missing, or set to false, the service will not be created if it

is not found, and an error is returned.

In components other than Algorithms and Services (e.g. Tools, Converters), which do not provide the

service function, you can locate a service using the serviceLocator function:

Listing 10.1 Job Option to create additional services

ApplicationMgr.ExtSvc += { "DbEventCnvSvc/RootEvtCnvSvc" };

Listing 10.2 Code to access the IParticlePropertySvc interface from an Algorithm

#include "GaudiKernel/IParticlePropertySvc.h"

...

IParticlePropertySvc* m_ppSvc;

StatusCode sc = service("ParticlePropertySvc", m_ppSvc, true);

if (sc.isFailure) {

...

#include "GaudiKernel/IParticlePropertySvc.h"

...

IParticlePropertySvc* m_ppSvc;

IService* theSvc;

StatusCode sc=serviceLocator()->getService("ParticlePropertySvc",theSvc,true);

if (sc.isSuccess()) {

 sc = theSvc->queryInterface(IID_IParticlePropertySvc, (void**)&m_ppSvc);

}

if (sc.isFailure) {

...

page 101

Chapter 10 Framework services Version/Issue: 8.0.0

10.3 The Job Options Service

The Job Options Service is a mechanism which allows to configure an application at run time, without

the need to recompile or relink. The options, or properties, are set via a job options file, which is read in

when the Job Options Service is initialised by the Application Manager. In what follows we describe

the format of the job options file, including some examples.

10.3.1 Algorithm, Tool and Service Properties

In general a concrete Algorithm, Service or Tool will have several data members which are used to

control execution. These data members (properties) can be of a basic data type (int, float, etc.) or

class (Property) encapsulating some common behaviour and higher level of functionality. Each

concrete Algorithm, Service, Tool declares its properties to the framework using the

declareProperty templated method as shown for example on line 12 of Listing 10.4 (see also

<Section 5.2>). The method setProperties() is called by the framework in the initialization

phase; this causes the job options service to make repeated calls to the setProperty() method of

the Algorithm, Service or Tool (once for each property in the job options file), which actually assigns

values to the data members.

10.3.1.1 SimpleProperties

Simple properties are a set of classes that act as properties directly in their associated Algorithm, Tool

or Service, replacing the corresponding basic data type instance. The primary motivation for this is to

allow optional bounds checking to be applied, and to ensure that the Algorithm, Tool or Service itself

doesn’t violate those bounds. Available SimpleProperties are:

¥ int ==> IntegerProperty or SimpleProperty<int>

¥ double ==> DoubleProperty or SimpleProperty<double>

¥ bool ==> BooleanProperty or SimpleProperty<bool>)

¥ std::string ==> StringProperty or SimpleProperty<std::string>

and the equivalent vector classes

¥ std::vector<int> ==> IntegerArrayProperty or

SimpleProperty<std::vector<int>>

¥ etc.

Associated with each property is a verifier which can be used to set optional upper and lower bounds

and, and to enquire whether such bounds have been set and their values.

page 102

The use of these classes is illustrated by the EventCounter class (Listings 10.3 and 10.4).

In the Algorithm constructor, when calling declareProperty, you can optionally set the bounds

using any of:

 verifier().setBounds(const T& lower, const T& upper);

 verifier().setLower (const T& lower);

Listing 10.3 EventCounter.h

1: #include "GaudiKernel/Algorithm.h"

2: #include "GaudiKernel/Property.h"

3: class EventCounter : public Algorithm {

4: public:

5: EventCounter(const std::string& name, ISvcLocator* pSvcLocator);

6: ~EventCounter();

7: StatusCode initialize();

8: StatusCode execute();

9: StatusCode finalize();

10: private:

11: IntegerProperty m_frequency;

12: int m_skip;

13: int m_total;

14: };

Listing 10.4 EventCounter.cpp

1: #include "GaudiAlg/EventCounter.h"

2: #include "GaudiKernel/MsgStream.h"

3: #include "GaudiKernel/AlgFactory.h"

4:

5: static const AlgFactory<EventCounter> Factory;

6: const IAlgFactory& EventCounterFactory = Factory;

7:

8: EventCounter::EventCounter(const std::string& name, ISvcLocator*

9: pSvcLocator) :

10: Algorithm(name, pSvcLocator),

11: m_skip (0), m_total(0) {

12: declareProperty("Frequency", m_frequency=1); // [1]

13: m_frequency.verifier().setBounds(0, 1000); // [2]

14: }

15:

16: StatusCode EventCounter::initialize() {

17: MsgStream log(msgSvc(), name());

18: log << MSG::INFO << "Frequency: " << m_frequency << endreq; // [3]

19: return StatusCode::SUCCESS;

20: }

Notes:

1. A default value may be specified when the property is declared.

2. Optional upper and lower bounds may be set (see later).

3. The value of the property is accessible directly using the property itself.

page 103

Chapter 10 Framework services Version/Issue: 8.0.0

 verifier().setUpper (const T& upper);

There are similar selectors and modifiers to determine whether a bound has been set etc., or to clear a

bound.

 bool verifier().hasLower()

 bool verifier().hasUpper()

 T verifier().lower()

 T verifier().upper()

 void verifier().clearBounds()

 void verifier().clearLower()

 void verifier().clearUpper()

You can set the property value using the "=" operator or the set functions

 bool set(const T& value)

 bool setValue(const T& value)

The function value indicates whether the new value was within any bounds and was therefore

successfully updated. In order to access the value of the property, use:

 m_property.value();

In addition there’s a cast operator, so you can also use m_property directly instead of

m_property.value().

10.3.1.2 CommandProperty

CommandProperty is a subclass of StringProperty that has a handler that is called whenever

the value of the property is changed. Currently that can happen only during the job initialization so it is

not terribly useful. Alternatively, an Algorithm could set the property of one of its sub-algorithms.

However, it is envisaged that Athena will be extended with a scripting language such that properties can

be modified during the course of execution.

The relevant portion of the interface to CommandProperty is:

 class CommandProperty : public StringProperty {

 public:

 [...]

 virtual void handler(const std::string& value) = 0;

 [...]

 };

Thus subclasses should override the handler() member function, which will be called whenever the

property value changes. A future development is expected to be a ParsableProperty (or something

similar) that would offer support for parsing the string.

page 104

10.3.2 Accessing and modifiying properties

Properties are private data which are initialised by the framework using the default values given when

they are declared in constructors, or the values read from the job options file. On occasions it may be

necessary for components to access (or even modify) the values of properties of other components. This

can be done by using the getProperty() and setProperty() methods of the IProperty

interface. In the example below,,an algorithm stores the default value of a cut of its sub-algorithm, then

executes the sub-algorithm with a different cut, before resetting the cut back to its default value. Note

that in the example we begin with a pointer to an Algorithm object, not an IAlgorithm interface.

This means that we have access to the methods of both the IAlgorithm and IProperty interfaces

and can therefore call the methods of the IProperty interface. In the general one may need to

navigate to the IProperty interface first, as explaned in <Section 1.6>.

10.3.3 Job options file format

An example of a job options file was shown in <Section 4.2> on <Page 29>. The job options file has a

well-defined syntax (similar to a simplified C++-Syntax) without data types. The data types are

recognised by the ÒJob Options CompilerÓ, which interprets the job options file according to the syntax

(described in <Appendix C> together with possible compiler error codes).

The job options file is an ASCII-File, composed logically of a series of statements. The end of a

statement is signalled by a semicolon Ò;Ò - as in C++.

Comments are the same as in C++, with Õ//Õ until the end of the line, or between Õ/*Õ and Õ*/Õ.

There are four constructs which can be used in a job options file:

¥ Assignment statement

¥ Append statement

¥ Include directive

¥ Platform dependent execution directive

Algorithm* myAlg;

...

std:string dfltCut;

StatusCode sc = myAlg->getProperty("TheCut", dfltCut);

if (sc.isSuccess()) {

 msgAlg->setProperty("TheCut", "0.8");

 StatusCode sc1 = myAlg->execute();

 ...

}

if(scl.isSuccess()) msgProp->setProperty("The Cut", dfltCut);

page 105

Chapter 10 Framework services Version/Issue: 8.0.0

10.3.3.1 Assignment statement

An assignment statement assigns a certain value (or a vector of values) to a property of an object or

identifier. An assignment statement has the following structure:

The first token (Object / Identifier) specifies the name of the object whose property is to be

set. This must be followed by a dot (Õ.Õ)

The next token (Propertyname) is the name of the option to be set, as declared in the

declareProperty() method of the IProperty interface. This must be followed by an assign

symbol (Õ=Õ).

The final token (value) is the value to be assigned to the property. It can be a vector of values, in

which case the values are enclosed in array brackets (Õ{Ô,Õ}Ô), and separated by commas (,). The token

must be terminated by a semicolon (Õ;Õ).

The type of the value(s) must match that of the variable whose value is to be set, as declared in

declareProperty(). The following types are recognised:

Boolean-type, written as true or false.

e.g. true; false;

Integer-type, written as an integer value (containing one or more of the digits Õ0Õ, Õ1Õ, Õ2Õ, Õ3Õ, Õ4Õ,

Õ5Õ, Õ6Õ, Õ7Õ, Õ8Õ, Õ9Õ)

e.g.: 123; -923; or in scientific notation, e.g.: 12e2;

Real-type (similar to double in C++), written as a real value (containing one or more of the

digits Õ0Õ, Õ1Õ, Õ2Õ, Õ3Õ, Õ4Õ, Õ5Õ, Õ6Õ, Õ7Õ, Õ8Õ, Õ9Õ followed by a dot Õ.Õ and optionally one or more of digits

again)

e.g.: 123.; -123.45; or in scientific notation, e.g. 12.5e7;

String type, written within a pair of double quotes (Ô Ó Õ)

e.g.: “I am a string”; (Note: strings without double quotes are not allowed!)

Vector of the types above, within array-brackets (Õ{Õ, Õ}Õ), separated by a comma (Õ,Õ)

e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

A single element which should be stored in a vector must be within array-brackets without

a comma

e.g. {true};
e.g. {“String”};

A vector which has already been defined earlier in the file (or in included files) can be

reset to an empty vector

e.g. {};

<Object / Identifier> . < Propertyname > = < value >;

page 106

10.3.3.2 Append Statement

Because of the possibility of including other job option files (see below), it is sometimes necessary to

extend a vector of values already defined in the other job option file. This functionality is provided be

the append statement.

An append statement has the following syntax:

The only difference from the assignment statement is that the append statement requires the Õ+=Õ

symbol instead of the Ô=Õ symbol to separate the Propertyname and value tokens.

The value must be an array of one or more values

e.g. {true};
e.g. {“String”};
e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

The job options compiler itself tests if the object or identifier already exists (i.e. has already been

defined in an included file) and the type of the existing property. If the type is compatible and the object

exists the compiler appends the value to the existing property. If the property does not exist then the

append operation "+=" behaves as assignment operation Ò=Ó.

10.3.3.3 Including other Job Option Files

It is possible to include other job option files in order to use pre-defined options for certain objects. This

is done using the #include directive:

The Ò filename Ó can also contain the path where this file is located. By convention we use " .opts"

as the file extension for job options. The include directive can be placed anywhere in the job option file,

usually at the top (as in C++). Note that the value of a property defined earlier in the file may be

over-ridden by assigning a new value to the same property: the last value assigned is the valid value!

This makes it possible to over-ride the value of a property defined in a previously included file without

changing the include file.

It is possible to use environment variables in the #include statement, either standalone or as part of a

string. Both Unix style (Ò $environmentvariableÓ) and Windows style

(Ò %environmentvariable%Ó) are understood (on both platforms!). For example, in line <2>: of

<Listing 4.2> the logical name $STDOPTS, which is defined in the GaudiExamples package, points

to a directory containing a number of standard job options include files that can be used by applications.

<Object / Identifier> . < Propertyname > += < value >;

#include Òfilename.optsÓ

page 107

Chapter 10 Framework services Version/Issue: 8.0.0

As mentioned above, you can append values to vectors defined in an included job option file. The

interpreter creates these vectors at the moment he interprets the included file, so you can only append

elements defined in a file included before the append-statement!

As in C/C++, an included job option file can include other job option files. The compiler checks itself

whether the include file has already been included, so there is no need for #ifndef statements as in C

or C++ to check for multiple inclusion.

10.3.3.4 Platform dependent execution

The possibility exists to execute statements only according to the used platform. Statements within

platform dependent clauses are only executed if they are asserted to the current used platform.:

Only the variable WIN32 is defined! An #ifdef WIN32 will check if the used platform is a Windows

platform. If so, it will execute the statements until an #endif or an optional #else . On non-Windows

platforms it will execute the code within #else and #endif . Alternatively one directly can check for

a non-Windows platform by using the #ifndef WIN32 clause.

10.3.3.5 Switching on/off printing

By default, the Job Options Service prints out the contents of the Job Options files to the standard

output destination. The possibility exists to switch off this printing, and to toggle between the two

states, as shown below:

In the example above, all lines between line 2 and line 5 will not be printed.

Table 1

#ifdef WIN32

(Platform-Dependent Statement)

#else (optional)

(Platform-Dependent Statement)

#endif

1: // Switch off printing

2: #pragma print off

3: ..(some job options)

4: //Switch printing back on

5: #pragma print on

page 108

10.4 The Standard Message Service

One of the components directly visible to an algorithm object is the message service. The purpose of

this service is to provide facilities for the logging of information, warnings, errors etc. The advantage of

introducing such a component, as opposed to using the standard std::cout and std::cerr

streams available in C++ is that we have more control over what is printed and where it is printed.

These considerations are particularly important in an online environment.

The Message Service is configurable via the job options file to only output messages if their Òactivation

levelÓ is equal to or above a given Òoutput levelÓ. The output level can be configured with a global

default for the whole application:

and/or locally for a given client object (e.g. myAlgorithm):

Any object wishing to print some output should (must) use the message service. A pointer to the

IMessageSvc interface of the message service is available to an algorithm via the accessor method

msgSvc() , see section <5.2>. It is of course possible to use this interface directly, but a utility class

called MsgStream is provided which should be used instead.

10.4.1 The MsgStream utility

The MsgStream class is responsible for constructing a Message object which it then passes onto the

message service. Where the message is ultimately sent to is decided by the message service.

In order to avoid formatting messages which will not be sent because the verboseness level is too high,

a MsgStream object first checks to see that a message will be printed before actually constructing it.

However the threshold for a MsgStream object is not dynamic, i.e. it is set at creation time and

remains the same. Thus in order to keep synchronized with the message service, which in principle

could change its printout level at any time, MsgStream objects should be made locally on the stack

when needed. For example, if you look at the listing of the HelloWorld class (see also Listing 10.5

below) you will note that MsgStream objects are instantiated locally (i.e. not using new) in all three

of the IAlgorithm methods and thus are destructed when the methods return. If this is not done

messages may be lost, or too many messages may be printed.

Table 2

// Set output level threshold

//(1=VERBOSE, 2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL, 7=ALWAYS)

MessageSvc.OutputLevel = 4;

Table 3

myAlgorithm.OutputLevel = 2;

page 109

Chapter 10 Framework services Version/Issue: 8.0.0

The MsgStream class has been designed to resemble closely a normal stream class such as

std::cout , and in fact internally uses an ostrstream object. All of the MsgStream member

functions write unformatted data; formatted output is handled by the insertion operators.

An example use of the MsgStream class is shown below.

When using the MsgStream class just think of it as a configurable output stream whose activation is

actually controlled by the first word (message level) and which actually prints only when Ò endreqÓ is

supplied. For all other functionality simply refer to the C++ ostream class.

The Òactivation levelÓ of the MsgStream object is controlled by the first expression, e.g.

MSG::ERROR or MSG::DEBUG in the example above. Possible values are given by the enumeration

below:

Thus the code in Listing 10.5 will produce NO output if the print level of the message service is set

higher than MSG::ERROR. In addition if the serviceÕs print level is lower than or equal to

MSG::DEBUG the Ò Finalize completed successfully Ó message will be printed (assuming

of course it was successful).

10.4.1.1 User interface

What follows is a technical description of the part of the MsgStream user interface most often seen by

application developers. Please refer to the header file for the complete interface.

Insertion Operator

The MsgStream class overloads the Õ<<Ô operator as described below.

Listing 10.5 Use of a MsgStream object.

1: #include ÒGaudiKernel/MgsStream.hÓ

2:

3: StatusCode myAlgo::finalize() {

4: StatusCode status = Algorithm::finalise();

5: MsgStream log(msgSvc(), name());

6: if (status.isFailure()) {

7: // Print a two line message in case of failure.

8: log << MSG::ERROR << Ò Finalize failedÓ << endl

9: << ÒError initializing Base class.Ó << endreq;

10: }

11: else {

12: log << MSG::DEBUG << ÒFinalize completed successfullyÓ << endreq;

13: }

14: return status;

15: }

enum MSG::Level { VERBOSE, DEBUG, INFO, WARNING, ERROR, FATAL, ALWAYS };

page 110

MsgStream& operator <<(TYPE arg);

Insertion operator for various types. The argument is only formatted by the stream object

if the print level is sufficiently high and the stream is active. Otherwise the insertion

operators simply return. Through this mechanism extensive debug printout does not cause

large run-time overheads. All common base types such as char , unsigned char ,

int , float , etc. are supported

MsgStream& operator <<(MSG::Level level);

This insertion operator does not format any output, but rather (de)activates the streamÕs

formatting and forwarding engine depending on the value of level .

Accepted Stream Manipulators

The MsgStream specific manipulators are presented below, e.g. endreq : MsgStream&
endreq(MsgStream& stream) . Besides these, the common ostream and ios manipulators such

as std::ends , std::endl ,... are also accepted.

endl Inserts a newline sequence. Opposite to the ostream behaviour this manipulator does not flush the

buffer. Full name: MsgStream& endl(MsgStream& s)

ends Inserts a null character to terminate a string. Full name: MsgStream& ends(MsgStream&
s)

flush Flushes the stream’s buffer but does not produce any output! Full name: MsgStream&
flush(MsgStream& s)

endreq Terminates the current message formatting and forwards the message to the message service. If

no message service is assigned the output is sent to std::cout . Full name: MsgStream&
endreq(MsgStream& s)

endmsg Same as endreq

10.5 The Particle Properties Service

The Particle Property service is a utility to find information about a named particleÕs Geant3 ID,

Jetset/Pythia ID, Geant3 tracking type, charge, mass or lifetime. The database used by the service can

be changed, but by default is the same as that used by the LHCb SICB program. Note that the units

conform to the CLHEP convention, in particular MeV for masses and ns for lifetimes. Any comment to

the contrary in the code is just a leftover which has been overlooked!

page 111

Chapter 10 Framework services Version/Issue: 8.0.0

10.5.1 Initialising and Accessing the Service

This service is created by adding the following line in the Job Options file::

 Listing 10.2 on page 100 shows how to access this service from within an algorithm.

10.5.2 Service Properties

The Particle Property Service currently only has one property: ParticlePropertiesFile. This

string property is the name of the database file that should be used by the service to build up its list of

particle properties. The default value of this property, on all platforms, is

$LHCBDBASE/cdf/particle.cdf1

10.5.3 Service Interface

The service implements the IParticlePropertySvc interface. In order to use it, clients must

include the file GaudiKernel/IParticlePropertySvc.h.

The service itself consists of one STL vector to access all of the existing particle properties, and three

STL maps, one to map particles by name, one to map particles by Geant3 ID and one to map particles

by stdHep ID.

Although there are three maps, there is only one copy of each particle property and thus each property

must have a unique particle name and a unique Geant3 ID. Particles that are known to Geant but not to

stdHep, such as Deuteron, have an artificial stdHep ID using unreserved (>7) digits. Although

retrieving particles by name should be sufficient, the second and third maps are there because most

often generated data stores a particleÕs Geant3 ID or stdHep ID, and not the particleÕs name. These

maps speed up searches using the IDs.

Table 4

// Create the particle properties service

ApplicationMgr.ExtSvc += { "ParticlePropertySvc" };

1. This is an LHCb specific file. A generic implementation will be available in a future release of Gaudi

page 112

The IParticlePropertySvc interface provides the following functions:

Listing 10.6 The IParticlePropertySvc interface.

// IParticlePropertySvc interface:

// Create a new particle property.

// Input: particle, String name of the particle.

// Input: geantId, Geant ID of the particle.

// Input: jetsetId, Jetset ID of the particle.

// Input: type, Particle type.

// Input: charge, Particle charge (/e).

// Input: mass, Particle mass (MeV).

// Input: tlife, Particle lifetime (ns).

// Return: StatusCode - SUCCESS if the particle property was added.

virtual StatusCode push_back(const std::string& particle, int geantId, int

jetsetId, int type, double charge, double mass, double tlife);

// Create a new particle property.

// Input: pp, a particle property class.

// Return: StatusCode - SUCCESS if the particle property was added.

virtual StatusCode push_back(ParticleProperty* pp);

// Get a const reference to the begining of the map.

virtual const_iterator begin() const;

// Get a const reference to the end of the map.

virtual const_iterator end() const;

// Get the number of properties in the map.

virtual int size() const;

// Retrieve a property by geant id.

// Pointer is 0 if no property found.

virtual ParticleProperty* find(int geantId);

// Retrieve a property by particle name.

// Pointer is 0 if no property found.

virtual ParticleProperty* find(const std::string& name);

// Retrieve a property by StdHep id

// Pointer is 0 if no property found.

virtual ParticleProperty* findByStdHepID(int stdHepId);

// Erase a property by geant id.

virtual StatusCode erase(int geantId);

// Erase a property by particle name.

virtual StatusCode erase(const std::string& name);

// Erase a property by StdHep id

virtual StatusCode eraseByStdHepID(int stdHepId);

page 113

Chapter 10 Framework services Version/Issue: 8.0.0

The IParticlePropertySvc interface also provides some typedefs for easier coding:

10.5.4 Examples

Below are some extracts of code from the LHCb ParticleProperties example to show how one

might use the service:

10.6 The Chrono & Stat service

The Chrono & Stat service provides a facility to do time profiling of code (Chrono part) and to do some

statistical monitoring of simple quantities (Stat part). The service is created by default by the

Application Manager, with the name Ò ChronoStatSvcÓ and service ID extern const CLID&

Listing 1

typedef ParticleProperty* mapped_type;

typedef std::map< int, mapped_type, std::less<int> > MapID;

typedef std::map< std::string, mapped_type, std::less<std::string> >

MapName;

typedef std::map< int, mapped_type, std::less<int> > MapStdHepID;

typedef IParticlePropertySvc::VectPP VectPP;

typedef IParticlePropertySvc::const_iterator const_iterator;

typedef IParticlePropertySvc::iterator iterator;

Listing 10.7 Code fragment to find particle properties by particle name.

 // Try finding particles by the different methods

 log << MSG::INFO << "Trying to find properties by Geant3 ID..." << endreq;

 ParticleProperty* pp1 = m_ppSvc->find(1);

 if (pp1) log << MSG::INFO << *pp1 << endreq;

 log << MSG::INFO << "Trying to find properties by name..." << endreq;

 ParticleProperty* pp2 = m_ppSvc->find("e+");

 if (pp2) log << MSG::INFO << *pp2 << endreq;

 log << MSG::INFO << "Trying to find properties by StdHep ID..." << endreq;

 ParticleProperty* pp3 = m_ppSvc->findByStdHepID(521);

 if (pp3) log << MSG::INFO << *pp3 << endreq;

Listing 10.8 Code fragment showing how to use the map iterators to access particle properties.

// List all properties

log << MSG::DEBUG << "Listing all properties..." << endreq;

for(IParticlePropertySvc::const_iterator i = m_ppSvc->begin();

i != m_ppSvc->end(); i++) {

if (*i) log << *(*i) << endreq;

}

page 114

IID_IChronoStatSvc To access the service from inside an algorithm, the member function

chronoSvc() is provided. The job options to configure this service are described in <Appendix B>,

<Table B-2>.

10.6.1 Code profiling

Profiling is performed by using the chronoStart() and chronoStop() methods inside the codes

to be profiled, e.g:

The profiling information accumulates under the tag name given as argument to these methods. The

service measures the time elapsed between subsequent calls of chronoStart() and

chronoStop() with the same tag. The latter is important, since in the sequence of calls below, only

the elapsed time between lines 3 and 5 lines and between lines 7 and 9 lines would be accumulated.:

The profiling information could be printed either directly using the chronoPrint() method of the

service, or in the summary table of profiling information at the end of the job.

Note that this method of code profiling should be used only for fine grained monitoring inside

algorithms. To profile a complete algorithm you should use the Auditor service, as described in section

10.7.

Listing 2

/// ...

IChronoStatSvc* svc = chronoSvc();

/// start

svc->chronoStart("Some Tag");

/// here some user code are placed:

...

/// stop

svc->chronoStop("SomeTag");

Listing 3

1: svc->chronoStop("Tag");

2: svc->chronoStop("Tag");

3: svc->chronoStart("Tag");

4: svc->chronoStart("Tag");

5: svc->chronoStop("Tag");

6: svc->chronoStop("Tag");

7: svc->chronoStart("Tag");

8: svc->chronoStart("Tag");

9: svc->chronoStop("Tag");

page 115

Chapter 10 Framework services Version/Issue: 8.0.0

10.6.2 Statistical monitoring

Statistical monitoring is performed by using the stat() method inside user code:

The statistical information contains the "accumulated" flag, which is the sum of all Flags for the given

tag, and the "accumulated" weight, which is the product of all Weights for the given tag. The

information is printed in the final table of statistics.

In some sense the profiling could be considered as statistical monitoring, where the variable Flag

equals the elapsed time of the process.

10.6.3 Chrono and Stat helper classes

To simplify the usage of the Chrono & Stat Service, two helper classes were developed: class

Chrono and class Stat. Using these utilities, one hides the communications with Chrono & Stat

Service and provides a more friendly environment.

10.6.3.1 Chrono

Chrono is a small helper class which invokes the chronoStart() method in the constructor and

the chronoStop() method in the destructor. It must be used as an automatic local object.

It performs the profiling of the code between its own creation and the end of the current scope, e.g:

If the Chrono & Stat Service is not accessible, the Chrono object does nothing

Listing 4

1: /// ... Flag and Weight to be accumulated:

2: svc->stat(" Number of Tracks " , Flag , Weight);

Listing 5

1: #include GaudiKernel/Chrono.h

2: /// ...

3: { // begin of the scope

4: Chrono chrono(chronoSvc() , "ChronoTag") ;

5: /// some codes:

6: ...

7: ///

8: } // end of the scope

9: /// ...

page 116

10.6.3.2 Stat

Stat is a small helper class, which invokes the stat() method in the constructor.

If the Chrono & Stat Service is not accessible, the Stat object does nothing.

10.6.4 Performance considerations

The implementation of the Chrono & Stat Service uses two std::map containers and could generate

a performance penalty for very frequent calls. Usually the penalty is small relative to the elapsed time

of algorithms, but it is worth avoiding both the direct usage of the Chrono & Stat Service as well as the

usage of it through the Chrono or Stat utilities inside internal loops:

10.7 The Auditor Service

The Auditor Service provides a set of auditors that can be used to provide monitoring of various

characteristics of the execution of Algorithms. Each auditor is called immediately before and after each

call to each Algorithm instance, and can track some resource usage of the Algorithm. Calls that are thus

monitored are initialize(), execute() and finalize(), although monitoring can be

disabled for any of these for particular Algorithm instances. Only the execute() function monitoring

is enabled by default.

Listing 6

1: GaudiKernel/Stat.h

2: /// ...

3: Stat stat(chronoSvc() , "StatTag" , Flag , Weight) ;

4: /// ...

Listing 7

1: /// ...

2: { /// begin of the scope

3: Chrono chrono(chronoSvc() , "Good Chrono"); /// OK

4: long double a = 0 ;

5: for(long i = 0 ; i < 1000000 ; ++i)

6: {

7: Chrono chrono(svc , "Bad Chrono"); /// not OK

8: /// some codes :

9: a += sin(cos(sin(cos((long double) i))));

10: /// end of codes

11: Stat stat (svc , "Bad Stat", a); /// not OK

12: }

13: Stat stat (svc , "Good Stat", a); /// OK

14: } /// end of the scope!

15: /// ...

page 117

Chapter 10 Framework services Version/Issue: 8.0.0

Several examples of auditors are provided. These are:

¥ NameAuditor. This just emits the name of the Algorithm to the Standard Message Service

immediately before and after each call. It therefore acts as a diagnostic tool to trace program

execution.

¥ ChronoAuditor. This monitors the cpu usage of each algorithm and reports both the total and

per event average at the end of job.

¥ MemoryAuditor. This monitors the state of memory usage during execution of each

Algorithm, and will warn when memory is allocated within a call without being released on

exit. Unfortunately this will in fact be the general case for Algorithms that are creating new

data and registering them with the various transient stores. Such Algorithms will therefore

cause warning messages to be emitted. However, for Algorithms that are just reading data

from the transient stores, these warnings will provide an indication of a possible memory leak.

Note that currently the MemoryAuditor is only available for Linux.

¥ MemStatAuditor. The same as MemoryAuditor, but prints a table of memory usage statistics at

the end.

10.7.1 Enabling the Auditor Service and specifying the enabled Auditors

The Auditor Service is enabled by the following line in the Job Options file:

Specifying which auditors are enabled is illustrated by the following example:

10.7.2 Overriding the default Algorithm monitoring

By default, only monitoring of the Algorithm execute() function is enabled by default. This default

can be overridden for individual Algorithms by use of the following Algorithm properties:

Table 5

// Enable the Auditor Service

ApplicationMgr.DLLs += { "GaudiAud" };

Table 6

// Enable the NameAuditor and ChronoAuditor

AuditorSvc.Auditors = { "NameAuditor", "ChronoAuditor" };

Table 7

// Enable initialize and finalize auditing & disable execute auditing

// for the myAlgorithm Algorithm

myAlgorithm.AuditInitialize = true;

myAlgorithm.AuditExecute = false;

myAlgorithm.AuditFinalize = true;

page 118

10.7.3 Implementing new Auditors

The relevant portion of the IAuditor abstract interface is shown below:

A new Auditor should inherit from the Auditor base class and override the appropriate functions from

the IAuditor abstract interface. The following code fragment is taken from the ChronoAuditor:

10.8 The Random Numbers Service

When generating random numbers two issues must be considered:

¥ reproducibility and

¥ randomness of the generated numbers.

In order to ensure both, Athena implements a single service ensuring that these criteria are met. The

encapsulation of the actual random generator into a service has several advantages:

Table 8

virtual StatusCode beforeInitialize(IAlgorithm* theAlg) = 0;

virtual StatusCode afterInitialize (IAlgorithm* theAlg) = 0;

virtual StatusCode beforeExecute (IAlgorithm* theAlg) = 0;

virtual StatusCode afterExecute (IAlgorithm* theAlg) = 0;

virtual StatusCode beforeFinalize (IAlgorithm* theAlg) = 0;

virtual StatusCode afterFinalize (IAlgorithm* theAlg) = 0;

Table 9

#include "GaudiKernel/Auditor.h"

class ChronoAuditor : virtual public Auditor {

public:

 ChronoAuditor(const std::string& name, ISvcLocator* pSvcLocator);

 virtual ~ChronoAuditor();

 virtual StatusCode beforeInitialize(IAlgorithm* alg);

 virtual StatusCode afterInitialize(IAlgorithm* alg);

 virtual StatusCode beforeExecute(IAlgorithm* alg);

 virtual StatusCode afterExecute(IAlgorithm* alg);

 virtual StatusCode beforeFinalize(IAlgorithm* alg);

 virtual StatusCode afterFinalize(IAlgorithm* alg);

};

page 119

Chapter 10 Framework services Version/Issue: 8.0.0

¥ Random seeds are set by the framework. When debugging the detector simulation, the

program could start at any event independent of the events simulated before. Unlike the

random number generators that were known from CERNLIB, the state of modern generators

is no longer defined by one or two numbers, but rather by a fairly large set of numbers. To

ensure reproducibility the random number generator must be initialized for every event.

¥ The distribution of the random numbers generated is independent of the random number

engine behind. Any distribution can be generated starting from a flat distribution.

¥ The actual number generator can easily be replaced if at some time in the future better

generators become available, without affecting any user code.

The implementation of both generators and random number engines are taken from CLHEP. The

default random number engine used by Athena is the RanLux engine of CLHEP with a luxury level of

3, which is also the default for Geant4, so as to use the same mechanism to generate random numbers as

the detector simulation.

Figure 10.1 shows the general architecture of the Athena random number service. The client interacts

with the service in the following way:

¥ The client requests a generator from the service, which is able to produce a generator

according to a requested distribution. The client then retrieves the requested generator.

¥ Behind the scenes, the generator service creates the requested generator and initializes the

object according to the parameters. The service also supplies the shared random number

engine to the generator.

¥ After the client has finished using the generator, the object must be released in order to inhibit

resource leaks

There are many different distributions available. The shape of the distribution must be supplied as a

parameter when the generator is requested by the user.

Currently implemented distributions include the following. See also the header file

GaudiKernel/RndmGenerators.h for a description of the parameters to be supplied.

¥ Generate random bit patterns with parameters Rndm::Bit()

¥ Generate a flat distribution with boundaries [min, max] with parameters:

Rndm::Flat(double min, double max)

Figure 10.1 The architecture of the random number service. The client requests from the service a random

number generator satisfying certain criteria

RndmGenSvc

RndmGen RndmEngine

Distribution:

Gauss

owns & initializes

usesowns

page 120

¥ Generate a gaussian distribution with parameters: Rndm::Gauss(double mean,

double sigma)

¥ Generate a poissonian distribution with parameters: Rndm::Poisson(double mean)

¥ Generate a binomial distribution according to n tests with a probability p with parameters:

Rndm::Binomial(long n, double p)

¥ Generate an exponential distribution with parameters: Rndm::Exponential(double

mean)

¥ Generate a Chi**2 distribution with n_dof degrees of freedom with parameters:

Rndm::Chi2(long n_dof)

¥ Generate a Breit-Wigner distribution with parameters:

Rndm::BreitWigner(double mean, double gamma)

¥ Generate a Breit-Wigner distribution with a cut-off with parameters:

Rndm::BreitWignerCutOff (mean, gamma, cut-off)

¥ Generate a Landau distribution with parameters:

Rndm::Landau(double mean, double sigma)

¥ Generate a user defined distribution. The probability density function is given by a set of

descrete points passed as a vector of doubles:

Rndm::DefinedPdf(const std::vector<double>& pdf, long intpol)

Clearly the supplied list of possible parameters is not exhaustive, but probably represents most needs.

The list only represents the present content of generators available in CLHEP and can be updated in

case other distributions will be implemented.

Since there is a danger that the interfaces are not released, a wrapper is provided that automatically

releases all resources once the object goes out of scope. This wrapper allows the use of the random

number service in a simple way. Typically there are two different usages of this wrapper:

¥ Within the user code a series of numbers is required only once, i.e. not every event. In this

case the object is used locally and resources are released immediately after use. This example

is shown in Listing 10.9 .

Listing 10.9 Example of the use of the random number generator to fill a histogram with a Gaussian

distribution within a standard Athena algorithm

1: Rndm::Numbers gauss(randSvc(), Rndm::Gauss(0.5,0.2));

2: if (gauss) {

3: IHistogram1D* his = histoSvc()->book("/stat/2","Gaussian",40,0.,3.);

4: for (long i = 0; i < 5000; i++)

5: his->fill(gauss(), 1.0);

6: }

page 121

Chapter 10 Framework services Version/Issue: 8.0.0

¥ One or several random numbers are required for the processing of every event. An example is

shown in Listing 10.10.

There are a few points to be mentioned in order to ensure the reproducibility:

¥ Do not keep numbers across events. If you need a random number ask for it. Usually caching

does more harm than good. If there is a performance penalty, it is better to find a more generic

solution.

¥ Do not access the RndmEngine directly.

¥ Do not manipulate the engine. The random seeds should only be set by the framework on an

event by event basis.

10.9 The Incident Service

The Incident service provides synchronization facilities to components in a Athena application.

Incidents are named software events that are generated by software components and that are delivered

to other components that have requested to be informed when that incident happens. The Athena

components that want to use this service need to implement the IIncidentListener interface,

Listing 10.10 Example of the use of the random number generator within a standard Athena algorithm, for

use at every event. The wrapper to the generator is part of the Algorithm itself and must be initialized before

being used. Afterwards the usage is identical to the example described in Listing 10.9

1: #include "GaudiKernel/RndmGenerators.h"

2:

3: // Constructor

4: class myAlgorithm : public Algorithm {

5: Rndm::Numbers m_gaussDist;

6: ...

7: };

8:

9: // Initialisation

10: StatusCode myAlgorithm::initialize() {

11: ...

1: StatusCode sc=m_gaussDist.initialize(randSvc(), Rndm::Gauss(0.5,0.2));

2: if (!status.isSuccess()) {

3: // put error handling code here...

4: }

5: ...

6: }

page 122

which has only one method: handle(Incident&), and they need to add themselves as Listeners

to the IncidentSvc. The following code fragment works inside Algorithms.

The third argument in method addListener() is for specifying the priority by which the component

will be informed of the incident in case several components are listeners of the same named incident.

This parameter is used by the IncidentSvc to sort the listeners in order of priority.

Table 10

#include "GaudiKernel/IIncidentListener.h"

#include "GaudiKernel/IIncidentSvc.h"

class MyAlgorithm : public Algorithm, virtual public IIncidentListener {

 ...

};

MyAlgorithm::Initialize() {

 IIncidentSvc* incsvc;

 StatusCode sc = service("IncidentSvc", incsvc);

 int priority = 100;

 if(sc.isSuccess()) {

 incsvc->addListener(this, "BeginEvent", priority);

 incsvc->addListener(this, "EndEvent");

 }

}

MyAlgorithm::handle(Incident& inc) {

 log << "Got informed of incident: " << inc.type()

 << " generated by: " << inc.source() << endreq;

}

page 123

Chapter 10 Framework services Version/Issue: 8.0.0

10.9.1 Known Incidents

10.10 The Gaudi Introspection Service

Introspection is the ability of a programming language to interact with objects from a meta-level. The

Gaudi Introspection package defines a meta-model which gives the layout of this meta-information.

The data to fill this meta-information (i.e. the dictionary) can be generated by the Gaudi Object

Description package (described in Section 7.7 on page 7) by adding a few lines to the CMT

requirements file, as shown for example in Listing 10.11.

The C++-code generated in this way is compiled into a dll and loaded into the Gaudi Introspection

Model at runtime.

To get a reference to information about a real object, clients have to use the Gaudi Introspection Service

(IntrospectionSvc). The service can also be used to load the meta-information into the model.

The Gaudi Introspection Service is already used in several places in the framework (e.g. Interface to

Python, Data Store Browser).

Further information about this service is available at

http://cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm.

Table 10.1 Table of known named incidents

Incident Type Source Description

BeginEvent ApplicationMgr The ApplicationMgr is starting processing of a new

physics event. This incident can be use to clear caches

of the previous event in Services and Tools.

EndEvent ApplicationMgr The ApplicationMgr has finished processing the phys-

ics event. The Event data store is not yet purged at this

moment.

Listing 10.11 CMT requirements for generation of data dictionary of the LHCbEvent package

#---- dictionary

document obj2dict LHCbEventObj2Dict -group=dict ../xml/LHCbEvent.xml

library LHCbEventDict -group=dict ../dict/*.cpp

macro LHCbEventDict_shlibflags "$(use_linkopts) $(libraryshr_linkopts)"

http://cern.ch/lhcb-comp/Frameworks/DataDictionary/default.htm

page 124

10.11 Developing new services

10.11.1 The Service base class

Within Athena we use the term "Service" to refer to a class whose job is to provide a set of facilities or

utilities to be used by other components. In fact we mean more than this because a concrete service

must derive from the Service base class and thus has a certain amount of predefined behaviour; for

example it has initialize() and finalize() methods which are invoked by the application

manager at well defined times.

Figure 10.1 shows the inheritance structure for an example service called SpecificService . The

key idea is that a service should derive from the Service base class and additionally implement one

or more pure abstract classes (interfaces) such as IConcreteSvcType1 and

IConcreteSvcType2 in the figure.

As discussed above, it is necessary to derive from the Service base class so that the concrete service

may be made accessible to other Athena components. The actual facilities provided by the service are

available via the interfaces that it provides. For example the ParticleProperties service

implements an interface which provides methods for retrieving, for example, the mass of a given

particle. In figure 10.1 the service implements two interfaces each of two methods.

Figure 10.1 Implementation of a concrete service class. Though not shown in the figure, both of the

IConcreteSvcType interfaces are derived from IInterface.

page 125

Chapter 10 Framework services Version/Issue: 8.0.0

A component which wishes to make use of a service makes a request to the application manager.

Services are requested by a combination of name, and interface type, i.e. an algorithm would request

specifically either IConcreteSvcType1 or IConcreteSvcType2 .

The identification of what interface types are implemented by a particular class is done via the

queryInterface method of the IInterface interface. This method must be implemented in the

concrete service class. In addition the initialize() and finalize() methods should be

implemented. After initialization the service should be in a state where it may be used by other

components.

The service base class offers a number of facilities itself which may be used by derived concrete service

classes:

¥ Properties are provided for services just as for algorithms. Thus concrete services may be fine

tuned by setting options in the job options file.

¥ A serviceLocator method is provided which allows a component to request the use of

other services which it may need.

¥ A message service.

10.11.2 Implementation details

The following is essentially a checklist of the minimal code required for a service.

1. Define the interfaces

2. Derive the concrete service class from the Service base class.

3. Implement the queryInterface() method.

4. Implement the initialize() method. Within this method you should make a call to

Service::initialize() as the first statement in the method and also make an explicit

call to setProperties() in order to read the serviceÕs properties from the job options

(note that this is different from Algorithms, where the call to setProperties() is done in

the base class).

:

Listing 10.12 An interface class

#include "GaudiKernel/IInterface.h"

class IConcreteSvcType1 : virtual public IInterface {

public:

 void method1() = 0;

 int method2() = 0;

}

page 126

#include "IConcreteSvcType1.h"

const IID& IID_IConcreteSvcType1 = 143; // UNIQUE within LHCb !!

Listing 10.13 A minimal service implementation

#include "GaudiKernel/Service.h"

#include "IConcreteSvcType1.h"

#include "IConcreteSvcType2.h"

class SpecificService : public Service,

 virtual public IConcreteSvcType1,

 virtual public IConcreteSvcType2 {

public:

 // Constructor of this form required:

 SpecificService(const std::string& name, ISvcLocator* sl);

 queryInterface(constIID& riid, void** ppvIF);

};

Listing 10.12 An interface class

page 127

Chapter 10 Framework services Version/Issue: 8.0.0

// Factory for instantiation of service objects

static SvcFactory<SpecificService> s_factory;

const ISvcFactory& SpecificServiceFactory = s_factory;

// UNIQUE Interface identifiers defined elsewhere

extern const IID& IID_IConcreteSvcType1;

extern const IID& IID_IConcreteSvcType2;

// queryInterface

StatusCode SpecificService::queryInterface(const IID& riid, void** ppvIF) {

 if(IID_IConcreteSvcType1 == riid) {

 ppvIF = dynamic_cast<IConcreteSvcType1> (this);

 return StatusCode::SUCCESS;

 } else if(IID_IConcreteSvcType2 == riid) {

 ppvIF = dynamic_cast<IConcreteSvcType2> (this);

 return StatusCode::SUCCESS;

 } else {

 return Service::queryInterface(riid, ppvIF);

 }

}

StatusCode SpecificService::initialize() { ... }

StatusCode SpecificService::finalize() { ... }

// Implement the specifics ...

SpecificService::method1() {...}

SpecificService::method2() {...}

SpecificService::method3() {...}

SpecificService::method4() {...}

Listing 10.13 A minimal service implementation

page 128

page 129

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

Chapter 11

Tools and ToolSvc

11.1 Overview

Tools are light weight objects whose purpose is to help other components perform their work. A

framework service, the ToolSvc, is responsible for creating and managing Tools. An Algorithm

requests the tools it needs to the ToolSvc , specifying if requesting a private instance by declaring

itself as the parent. Since Tools are managed by the ToolSvc , any component1 can request a tool.

Algorithms, Services and other Tools can declare themselves as Tools parents.

In this chapter we first describe these objects and the difference between ÒprivateÓ and ÒsharedÓ tools.

We then look at the AlgTool base class and how to write concrete Tools.

In section 11.3 we describe the ToolSvc and show how a component can retrieve Tools via the

service.

Finally we describe Associators, common utility GaudiTools for which we provide the interface and

base class.

11.2 Tools and Services

As mentioned elsewhere Algorithms make use of framework services to perform their work. In general

the same instance of a service is used by many algorithms and Services are setup and initialized once at

the beginning of the job by the framework. Algorithms also delegate some of their work to

sub-algorithms. Creation and execution of sub-algorithms are the responsibilities of the parent

1. In this chapter we will use an Algorithm as example component requesting tools.

page 130

algorithm whereas the initialize() and finalize() methods are invoked automatically by the

framework while initializing the parent algorithm. The properties of a sub-algorithm are automatically

set by the framework but the parent algorithm can change them during execution. Sharing of data

between nested algorithms is done via the Transient Event Store.

Both Services and Algorithms are created during the initialization stage of a job and live until the jobs

ends.

Sometimes an encapsulated piece of code needs to be executed only for specific events, in which case it

is desirable to create it only when necessary. On other occasions the same piece of code needs to be

executed many times per event. Moreover it can be necessary to execute a sub-algorithm on specific

contained objects that are selected by the parent algorithm or have the sub-algorithm produce new

contained objects that may or may not be put in the Transient Store. Finally different algorithms may

wish to configure the same piece of code slightly differently or share it as-is with other algorithms.

To provide this kind of functionality we have introduced a category of processing objects that

encapsulate these ÒlightÓ algorithms. We have called this category Tools.

Some examples of possible tools are single track fitters, association to Monte Carlo truth information,

vertexing between particles, smearing of Monte Carlo quantities.

11.2.1 ÒPrivateÓ and ÒSharedÓ Tools

Algorithms can share instances of Tools with other Algorithms if the configuration of

the tool is suitable. In some cases however an Algorithm will need to customize a tool in a specific

way in order to use it. This is possible by requesting the ToolSvc to provide a ÒprivateÓ instance of a

tool.

If an Algorithm passes a pointer to itself when it asks the ToolSvc to provide it with a tool, it is

declaring itself as the parent and a ÒprivateÓ instance is supplied. Private instances can be configured

according to the needs of each particular Algorithm.

As mentioned above many Algorithms can use a tool as-is, in which case only one instance of a

Tool is created, configured and passed by the ToolSvc to the different algorithms. This is called a

Òshar edÓ instance. The parent of ÒsharedÓ tools is the ToolSvc.

11.2.2 The Tool classes

11.2.2.1 The AlgTool base class

The main responsibilities of the AlgTool base class (see Listing 11.1) are the identification of the

tools instances, the initialisation of certain internal pointers when the tool is created and the

page 131

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

management of the tools properties. The AlgTool base class also offers some facilities to help in the

implementation of derived tools and management of the additional tools interfaces..

Listing 11.1 The definition of the AlgTool Base class. Highlighted in bold are methods relevant for the

implementation of concrete tools.

1: class AlgTool : public virtual IAlgTool,

2: public virtual IProperty {

3:

4: public:

5: // Standard Constructor.

6: AlgTool(const std::string& type, const std::string& name,

 const IInterface* parent);

7:

8: ISvcLocator* serviceLocator() const;

9: IMessageSvc* msgSvc() const;

10:

11: virtual StatusCode setProperty(const Property& p);

12: virtual StatusCode setProperty(std::istream& s);

13: virtual StatusCode setProperty(const std::string& n,

 const std::string& v);

14: virtual StatusCode getProperty(Property* p) const;

15: virtual const Property& getProperty(const std::string& name) const;

16: virtual StatusCode getProperty(const std::string& n,std::string& v)

 const;

17: virtual const std::vector<Property*>& getProperties() const;

18:

19: StatusCode setProperties();

20:

21: template <class T>

22: StatusCode declareProperty(const std::string& name, T& property) const

23:

24: virtual const std::string& name() const;

25: virtual const std::string& type() const;

26: virtual const IInterface* parent() const;

27:

28: virtual StatusCode initialize();

29: virtual StatusCode finalize();

30:

31: virtual StatusCode queryInterface(const IID& riid, void** ppvUnknown);

32: void declInterface(const IID&, void*);

33: template <class I> class declareInterface {

 public:

 template <class T> declareInterface(T* tool)

}

34:

35: protected:

36: // Standard destructor.

37: virtual ~AlgTool();

page 132

Constructor - The base class has a single constructor which takes three arguments. The first is the type

(i.e. the class) of the Tool object being instantiated, the second is the full name of the object and the

third is a pointer to the IInterface of the parent component. The name is used for the identification

of the tool instance as described below.The parent interface is used by the tool to access for example the

outputLevel of the parent.

Access to Services - A serviceLocator() method is provided to enable the derived tools to

locate the services necessary to perform their jobs. Since concrete Tools are instantiated by the

ToolSvc upon request, all Services created by the framework prior to the creation of a tool are

available. In addition access to the message service is provided via the msgSvc() method. Both

pointers are retrieved from the parent of the tool.

Properties - A template method for declaring properties similarly to Algorithms is provided. This

allows tuning of data members used by the Tools via JobOptions files. The ToolSvc takes care of

calling the setProperties() method of the AlgTool base class after having instantiated a tool.

Properties need to be declared in the constructor of a Tool. The property outputLevel is declared

in the base class and is identically set to that of the parent component, unless specified otherwise in the

JobOptions. For details on Properties see section 10.3.1.

IAlgTool Interface - It consists of three accessor methods for the identification and managment of

the tools: type() , name() and parent() . These methods are all implemented by the base class

and should not be overridden. Two additional methods, initialize() and finalize(), allow

concrete tools to be configured after creation and orderly terminated before deletion. An empty

implementation is provided by the AlgTool base class and concrete tools need to implement these

methods only when relevant for their purpose. The ToolSvc is responsible for calling these methods

at the appropriate time.

Tools Interfaces - Concrete tools must implement additional interfaces that will inherit from

IAlgTool. When a component implements more that one interface it is necessary to "recognize"

the various interfaces. This is taken care of by the AlgTool base class once the additional

interface is declared by a concrete tool (or tools’ base class). The declaration of the additional

interface must be done in the constructor of a concrete tool and is done via the template method

declareInterface.

11.2.2.2 Tools identification

A tool instance is identified by its full name. The name consist of the concatenation of the parent name,

a dot, and a tool dependent part. The tool dependent part can be specified by the user, when not

specified the tool type (i.e. the class) is automatically taken as the tool dependent part of the name.

Examples of tool names are RecPrimaryVertex.VertexSmearer (a private tool) and

ToolSvc.AddFourMom (a shared tool). The full name of the tool has to be used in the jobOptions file to

set its properties.

11.2.2.3 Concrete tools classes

Operational functionalities of tools must be provided in the derived tool classes. A concrete tool class

must inherit directly or indirectly from the AlgTool base class to ensure that it has the predefined

behaviour needed for management by the ToolSvc.

page 133

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

Concrete tools must implement additional interfaces, specific to the task a tool is designed to perform.

Specialised tools intended to perform similar tasks can be derived from a common base class that will

provide the common functionality and implement the common interface. Consider as example the

vertexing of particles, where separate tools can implement different algorithms but the arguments

passed are the same. The ToolSvc interacts with specialized tools only through the additional tools

interface, therefore the interface itself must inherit from the IAlgTool interface in order for the tool

to be correctly managed by the ToolSvc.

The inheritance structure of derived tools is shown in Figure 11.1. ConcreteTool1 implements one

additional abstract interface while ConcreteTool2 and ConcreteTool3 derive from a base class

SubTool that provides them with additional common functionality.

11.2.2.4 Implementation of concrete tools

An example minimal implementation of a concrete tool is shown in Listings 11.2, 11.3 and 11.4, taken

from the LHCb ToolsAnalysis example application ..

Figure 11.1 Tools class hierarchy

Listing 11.2 Example of a concrete tool additional interface

1: static const InterfaceID IID_IVertexSmearer("IVertexSmearer", 1 , 0);

2:

3: class IVertexSmearer : virtual public IAlgTool {

4: public:

5: /// Retrieve interface ID

6: static const InterfaceID& interfaceID() { return IID_IVertexSmearer; }

7: // Actual operator function

8: virtual StatusCode smear(MyAxVertex*) = 0;

9: };

page 134

The creation of concrete tools is similar to that of Algorithms, making use of a Factory Method. As for

Algorithms, Tool factories enable their creator to instantiate new tools without having to include any of

the concrete tools header files. A template factory is provided and a tool developer will only need to add

the concrete factory in the implementation file as shown in lines 1 to 4 of Listing 11.4

In addition a concrete tool class must specify a single constructor with the same parameter signatures as

the constructor of the AlgTool base class as shown in line 5 of Listing 11.3.

Below is the minimal checklist of the code necessary when developing a Tool:

Listing 11.3 Example of a concrete tool minimal implementation header file

1: #include "GaudiKernel/AlgTool.h"

2: class VertexSmearer : public AlgTool, virtual public IVertexSmearer {

3: public:

4: // Constructor

5: VertexSmearer(const std::string& type, const std::string& name,

 const IInterface* parent);

6: // Standard Destructor

7: virtual ~VertexSmearer() { }

8: // specific method of this tool

9: StatusCode smear(MyAxVertex* pvertex);

Listing 11.4 Example of a concrete tool minimal implementation file

1: #include "GaudiKernel/ToolFactory.h"

2: // Static factory for instantiation of algtool objects

3: static ToolFactory<VertexSmearer> s_factory;

4: const IToolFactory& VertexSmearerFactory = s_factory;

5:

6: // Standard Constructor

7: VertexSmearer::VertexSmearer(const std::string& type,

 const std::string& name,

 const IInterface* parent)

 : AlgTool(type, name, parent) {

8:

9: // Locate service needed by the specific tool

10: m_randSvc = 0;

11: if(serviceLocator()) {

12: StatusCode sc=StatusCode::FAILURE;

13: sc = serviceLocator()->service("RndmGenSvc", m_randSvc, true);

14: }

15: // Declare additional interface

16: declareInterface<IVertexSmearer>(this);

17:

18: // Declare properties of the specific tool

19: declareProperty("dxVtx", m_dxVtx = 9 * micrometer);

20: declareProperty("dyVtx", m_dyVtx = 9 * micrometer);

21: declareProperty("dzVtx", m_dzVtx = 38 * micrometer);

22: }

23: // Implement the specific method

24: StatusCode VertexSmearer::smear(MyAxVertex* pvertex) {...}

page 135

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

1. Define the specific interface (inheriting from the IAlgTool interface).

2. Derive the tool class from the AlgTool base class

3. Provide the constructor

4. Declare the additional interface in the constructor.

5. Implement the factory adding the lines of code shown in Listing 11.4

6. Implement the specific interface methods.

In addition if a tool requires special initialization and termination you can implement the initialize and

finalize methods.

11.3 The ToolSvc

The ToolSvc manages Tools. It is its responsibility to create tools, configure them, make them

available to Algorithms or Services and terminate them in an orderly fashion before deleting

them.

The ToolSvc verifies if a tool type is available and creates the necessary instance after having verified

if it doesnÕt already exist. If a tool instance exists the ToolSvc will not create a new identical one but

pass to the algorithm the existing instance. Tools are created on a Òfirst requestÓ basis: the first

Algorithm requesting a tool will prompt its creation. The relationship between an algorithm, the

ToolSvc and Tools is shown in Figure 11.1.

Immediately after having created a tool, the ToolSvc will configure it by setting its properties and

calling the tool initialize() method.

The ToolSvc will ÒholdÓ a tool until it is no longer used by any component or until the finalize()

method of the tool service is called. Algorithms can inform the ToolSvc they are not going to use a

Figure 11.1 ToolSvc design diagram

IToolSvc

IService

ToolSvc

page 136

tool previously requested via the releaseTool method of the IToolSvc interface. Before deleting

the tools the ToolSvc will cleanly terminate them by calling their finalize() method.

The ToolSvc is created by default by the ApplicationMgr and algorithms wishing to use the

service can do so via the algorithm toolSvc() accessor method. Services and AlgTools need to

retrieve it using the serviceLocator() method of their respective base classes.

11.3.1 Retrieval of tools via the IToolSvc interface

The IToolSvc interface is the ToolSvc specific interface providing methods to retrieve tools.

The interface has two retrieve methods that differ in their parameters signature, as shown in Listing

11.5

The arguments of the method shown in Listing 11.5, line 1, are the tool type (i.e. the class), the tool

additional interface ID and the IAlgTool interface of the returned tool. In addition there are two

arguments with default values: one is the IInterface of the component requesting the tool, the other

a boolean creation flag. If the component requesting a tool passes a pointer to itself as the third

argument, it declares to the ToolSvc that it is asking for a ÒprivateÓ instance of the tool. By default a

ÒsharedÓ instance is provided. In general if the requested instance of a Tool does not exist the ToolSvc

will create it. This behaviour can be changed by setting to false the last argument of the method.

The method shown in Listing 11.5, line 2 differs from the one shown in line 1 by an extra argument, a

string specifying the tool dependent part of the full tool name. This enables a component to request two

separately configurable instances of the same tool.

Listing 11.5 The IToolSvc interface methods

1: virtual StatusCode retrieve(const std::string& type,

 const IID&,

 IAlgTool*& tool,

 const IInterface* parent=0,

 bool createIf=true) = 0;

2: virtual StatusCode retrieve(const std::string& type,

 const IID&,

 const std::string& name,

 IAlgTool*& tool,

 const IInterface* parent=0,

 bool createIf=true) = 0;

page 137

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

When retriving concrete tools, it is recommended to use the two templated functions provided in the

IToolSvc interface file which are shown in Listing 11.6.

The two template methods correspond to the IToolSvc retrieve methods but have the tool returned as

a template parameter. Using these methods the component retrieving a tool avoids explicit

dynamic-casting to specific additional interfaces or to derived classes.

Listing 11.7 shows an example of retrieval of a shared and of a common tool.

11.4 GaudiTools

In general concrete tools are specific to applications or detectorsÕ code but there are some tools of

common utility for which interfaces and base classes can be provided. The Associators described below

and contained in the GaudiTools package are one of such tools.

Listing 11.6 The IToolSvc template methods

1: template <class T>

2: StatusCode retrieveTool(const std::string& type,

 T*& tool,

 const IInterface* parent=0,

 bool createIf=true) {...}

3: template <class T>

4: StatusCode retrieveTool(const std::string& type,

 const std::string& name,

 T*& tool,

 const IInterface* parent=0,

 bool createIf=true) {...}

Listing 11.7 Example of retrieval by an algortihm of a shared tool in line 4: and of a private tool in line 10:

1: // Example of tool belonging to the ToolSvc and shared between

2: // algorithms

3: StatusCode sc;

4: sc = toolsvc()->retrieveTool("AddFourMom", m_sum4p);

5: if(sc.isFailure()) {

6: log << MSG::FATAL << " Unable to create AddFourMom tool" << endreq;

7: return sc;

8: }

9: // Example of private tool

10: sc = toolsvc()->retrieveTool("ImpactPar", m_ip, this);

11: if(sc.isFailure()) {

12: log << MSG::FATAL << " Unable to create ImpactPar tool" << endreq;

13: return sc;

14: }

page 138

11.4.1 Associators

When working with Monte Carlo data it is often necessary to compare the results of reconstruction or

physics analysis with the original corresponding Monte Carlo quantities on an event-by-event basis as

well as on a statistical level.

Various approaches are possible to implement navigation from reconstructed simulated data back to the

Monte Carlo truth information. Each of the approaches has its advantages and could be more suited for

a given type of event data or data-sets. In addition the reconstruction and physics analysis code should

treat simulated data in an identical way to real data.

In order to shield the code from the details of the navigation procedure, and to provide a uniform

interface to the user code, a set of Gaudi Tools, called Associators, has been introduced. The user can

navigate between any two arbitrary classes in the Event Model using the same interface as long as a

corresponding associator has been implemented. Since an Associator retrieves existing navigational

information, its actual implementation depends on the Event Model and how the navigational

information is stored. For some specific Associators, in addition, it can depend on some algorithmic

choices: consider as an example a physics analysis particle and a possible originating Monte Carlo

particle where the associating discriminant could be the fractional number of hits used in the

reconstruction of the tracks. An advantage of this approach is that the implementation of the navigation

can be modified without affecting the reconstruction and analysis algorithms because it would affect

only the associators. In addition short-cuts or complete navigational information can be provided to the

user in a transparent way. By limiting the use of such associators to dedicated monitoring algorithms

where the comparison between raw/reconstructed data and MC truth is done, one could ensure that the

reconstruction and analysis code treat simulated and real data in an identical way.

Associators must implement a common interface called IAssociator. An Associator base class

providing at the same time common functionality and some facilities to help in the implementation of

concrete Associators is provided. A prototype version of these classes is provided in the current release

of Athena.

11.4.1.1 The IAssociator Interface

As already mentioned Associators must implement the IAssociator interface.

In order for Associators to be retrieved from the ToolSvc only via the IAssociator interface, the

interface itself inherits from the IAlgTool interface. While the implementation of the IAlgTool

interface is done in the AlgTool base class, the implementation of the IAssociator interface is the

full responsibility of concrete associators.

page 139

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

The four methods of the IAssociator interface that a concrete Associator must implement are show

in Listing 11.8

Two i_retrieveDirect methods must be implemented for retrieving associated classes following

the same direction as the links in the data: for example from reconstructed particles to Monte Carlo

particles. The first parameter is a pointer to the object for which the associated Monte Carlo

quantity(ies) is requested. The second parameter, the discriminating signature between the two

methods, is one or a vector of pointers to the associated Monte Carlo objects of the type requested.

Some reconstructed quantities will have only one possible Monte Carlo associated object of a certain

type, some will have many, others will have many out of which a ÒbestÓ associated object can be

extracted. If one of the two methods is not valid for a concrete associator, such method must return a

failure. The third and fourth parameters are the class IDs of the objects for which the association is

requested. This allows to verify at run time if the objectsÕ types are those the concrete associator has

been implemented for.

The two i_retrieveInverse methods are complementary and are for retrieving the association

between the same two classes but in the opposite direction to that of the links in the data: for example

from Monte Carlo particles to reconstructed particles. The different name is intended to alert the user

that navigation in this direction may be a costly operation

Four corresponding template methods are implemented in IAssociator to facilitate the use of

Associators by Algorithms (see Listing 11.9). Using these methods the component retrieving a tool

Listing 11.8 Methods of the IAssociator Interface that must be implemented by concrete associators

1: virtual StatusCode i_retrieveDirect(ContaineData Objectect* objFrom,

 ContaineData Objectect*& objTo,

 const CLID idFrom,

 const CLID idTo) = 0;

2: virtual StatusCode i_retrieveDirect(ContaineData Objectect* objFrom,

 std::vector<ContaineData Objectect*>&

vObjTo, const CLID idFrom,

 const CLID idTo) = 0;

3: virtual StatusCode i_retrieveInverse(ContaineData Objectect* objFrom,

 ContaineData Objectect*& objTo,

 const CLID idFrom,

 const CLID idTo) = 0;

4: virtual StatusCode i_retrieveInverse(ContaineData Objectect* objFrom,

 std::vector<ContaineData Objectect*>&

vObjTo, const CLID idFrom,

 const CLID idTo) = 0;

page 140

avoids some explicit dynamic-casting as well as the setting of class IDs. An example of how to use such

methods is described in section 11.4.1.3.

11.4.1.2 The Associator base class

An associator is a type of AlgTool,so the Associator base class inherits from the AlgTool base

class. Thus, Associators can be created and managed as AlgTools by the ToolSvc. Since all the

methods of the AlgTool base class (as described in section 11.2.2.1) are available in the

Associator base class, only the additional functionality is described here.

Access to Event Data Service - An eventSvc() method is provided to access the Event Data

Service since most concrete associators will need to access data, in particular if accessing navigational

short-cuts.

Associator Properties - Two properties are declared in the constructor and can be set in the

jobOptions: Ò FollowLinksÓ and Ò DataLocationÓ. They are respectively a bool with initial

value true and a std::string with initial value set to Ò Ó. The first is foreseen to be used by an

associator when it is possible to either follow links between classes or retrieve navigational short cuts

from the data. A user can choose to set either behaviour at run time. The second property contains the

location in the data where the stored navigational information is located. Currently it must be set via the

jobOptions when necessary, as shown in Listing 11.10 for a particular implementation provided in the

Associator example. Two corresponding methods are provided for using the information from these

properties: followLinks() and whichTable().

Inverse Association - Retrieving information in the direction opposite to that of the links in the data is

in general a time consuming operation, that implies checking all the direct associations to access the

inverse relation for a specified object. For this reason Associators should keep a local copy of the

inverse associations after receiving the first request for an event. A few methods are provided to

facilitate the work of Associators in this case. The methods inverseExist() and

setInverseFlag(bool) help in keeping track of the status of the locally kept inverse

information.The method buildInverse() has to be overridden by concrete associators since they

choose in which form to keep the information and should be called by the associator when receiving the

first request during the processing of an event.

Listing 11.9 Template methods of the IAssociator interface

1: template <class T1, class T2>

 StatusCode retrieveDirect(T1* from, T2*& to) {...}

2: template <class T1>

 StatusCode retrieveDirect(T1* from,

 std::vector<ContaineData

Objectect*>& objVTo, const CLID idTo)

{...}

3: template <class T1, class T2>

 StatusCode retrieveInverse(T1* from, T2*& to) {...}

4: template <class T1>

 StatusCode retrieveInverse(T1* from,

 std::vector<ContaineData

Objectect*>& objVTo, const CLID idTo)

{...}

page 141

Chapter 11 Tools and ToolSvc Version/Issue: 8.0.0

Locally kept information - When a new event is processed, the associator needs to reset its status to

the same conditions as those after having been created . In order to be notified of such an incident

happening the Associator base class implements the IListener interface and, in the constructor,

registers itself with the Incident Service (see section 10.9 for details of the Incident Service). The

associatorÕs flushCache() method is called in the implementation of the IListener interface in

the Associator base class. This method must be overridden by concrete associators wanting to do a

meaningful reset of their initial status.

11.4.1.3 A concrete example

In this section we look at an example implementation of a specific associator. The code is taken from

the LHCb Associator example, but the points illustrated should be clear even without a knowledge

of the LHCb data model.

The AxPart2MCParticleAsct provides association between physics analysis particles

(AxPartCandidate) and the corresponding Monte Carlo particles (MCParticle). The direct

navigational information is stored in the persistent data as short-cuts, and is retrieved in the form of a

SmartRefTable in the Transient Event Store. This choice is specific to

AxPart2MCParticleAsct, any associator can use internally a different navigational mechanism.

The location in the Event Store where the navigational information can be found is set in the job options

via the Ò DataLocationÓ property , as shown in Listing 11.10.

In the current LHCb data model only a single MCParticle can be associated to one

AxPartCandidate and vice-versa only one or no AxPartCandidate can be associated to one

MCParticle. For this reason only the i_retrieveDirect and i_retrieveInverse

methods providing one-to-one association are meaningful. Both methods verify that the objects passed

are of the correct type before attempting to retrieve the information, as shown in Listing 11.11. When

no association is found, a StatusCode::FAILURE is returned.

The i_retrieveInverse method providing the one-to-many association returns a failure, while a

fake implementation of the one-to-many i_retrieveDirect method is implemented in the

example, to show how an Algorithm can use such a method. In the AxPart2MCParticleAsct

Listing 11.10 Example of setting properties for an associator via jobOptions

ToolSvc.AxPart2MCParticleAsct.DataLocation =

"/Event/Anal/AxPart2MCParticle";

Listing 11.11 Checking if objects to be associated are of the correct type

1: if (idFrom != AxPartCandidate::classID()){

2: objTo = 0;

3: return StatusCode::FAILURE;

4: }

5: if (idTo != MCParticle::classID()) {

6: objTo = 0;

7: return StatusCode::FAILURE;

8: }

page 142

example the inverse table is kept locally and both the buildInverse() and flushCache()

methods are overridden. In the example the choice has been made to implement an additional method

buildDirect() to retrieve the direct navigational information on a first request per event basis.

Listing 11.12 shows how a monitoring Algorithm can get an associator from the ToolSvc and use it to

retrieve associated objects through the template interfaces.

Listing 11.12 Extracted code from the AsctExampleAlgorithm

1: #include "GaudiTools/IAssociator.h"

2: // Example of retrieving an associator

3: IAssociator

4: StatusCode sc = toolsvc()->retrieveTool("AxPart2MCParticleAsct",

 m_pAsct);

5: if(sc.isFailure()) {

6: log << MSG::FATAL << "Unable to create Associator tool" << endreq;

7: return sc;

8: }

9: // Example of retrieving inverse one-to-one information from an

10: // associator

11: SmartDataPtr<MCParticleVector> vmcparts (evt,"/MC/MCParticles");

12: for(MCParticleVector::iterator itm = vmcparts->begin();

 vmcparts->end() != itm; itm++) {

13: AxPartCandidate* mptry = 0;

14: StatusCode sc = m_pAsct->retrieveInverse(*itm, mptry);

15: if(sc.isSuccess()) {...}

16: else {...}

17: }

18: // Example of retrieving direct one-to-many information from an

19: // associator

20: SmartDataPtr<AxPartCandidateVector> candidates(evt,

 "/Anal/AxPartCandidates");

21: std::vector<ContaineData Objectect*> pptry;

22: AxPartCandidate* itP = *(candidates->begin());

23: StatusCode sa =

 m_pAsct->retrieveDirect(itP, pptry, MCParticle::classID());

24: if(sa.isFailure()) {...}

25: else {

26: for (std::vector<ContaineData Objectect*>::iterator it =

pptry.begin(); pptry.end() != it; it++) {

27: MCParticle* imc = dynamic_cast<MCParticle*>(*it);

28: }

29: }

page 143

Chapter 12 Converters Version/Issue: 8.0.0

Chapter 12

Converters

12.1 Overview

Consider a small piece of detector; a silicon wafer for example. This ÒobjectÓ will appear in many

contexts: it may be drawn in an event display, it may be traversed by particles in a Geant4 simulation,

its position and orientation may be stored in a database, the layout of its strips may be queried in an

analysis program, etc. All of these uses or views of the silicon wafer will require code.

One of the key issues in the design of the framework was how to encompass the need for these different

views within Athena. In this chapter we outline the design adopted for the framework and look at how

the conversion process works. This is followed by sections which deal with the technicalities of writing

converters for reading from and writing to ROOT files.

12.2 Persistency converters

Athena gives the possibility to read event data from, and to write data back to, ROOT files. The use of

ODBC compliant databases is also possible, though this is not yet part of the Athena release. Other

persistency technologies have been implemented for LHCb, in particular the reading of data from

LHCb DSTs based on ZEBRA.

Figure 12.1 is a schematic illustrating how converters fit into the transient-persistent translation of

event data. We will not discuss in detail how the transient data store (e.g. the event data service) or the

page 144

persistency service work, but simply look at the flow of data in order to understand how converters are

used. An introduction to the persistency mechanism of Gaudi can be found in reference [13].

One of the issues considered when designing the Gaudi framework was the capability for users to

Òcreate their own data types and save objects of those types along with references to already existing

objectsÓ. A related issue was the possibility of having links between objects which reside in different

stores (i.e. files and databases) and even between objects in different types of store.

Figure 12.1 shows that data may be read from an ODBC database and/or ROOT files into the transient

event data store and that data may be written out again to the same media. It is the job of the persistency

service to orchestrate this transfer of data between memory and disk.

The figure shows two ÒslaveÓ services: the ODBC conversion service and the ROOT I/O service. These

services are responsible for managing the conversion of objects between their transient and persistent

representations. Each one has a number of converter objects which are actually responsible for the

conversion itself. As illustrated by the figure a particular converter object converts between the

transient representation and one other form, here either MS Access or ROOT.

12.3 Collaborators in the conversion process

In general the conversion process occurs between the transient representation of an object and some

other representation. In this chapter we will be using persistent forms, but it should be borne in mind

that this could be any other ÒtransientÓ form such as those required for visualisation or those which

serve as input into other packages (e.g. Geant4).

Figure 12.1 Persistency conversion services in Gaudi

RC

Transient

Data Store

MS

Access
ROOT

OC

OC
OC

ROOT

I/O

RC

RC

OC

RC

ODBC converter

ROOT converter

ODBC

Persistency service

page 145

Chapter 12 Converters Version/Issue: 8.0.0

Figure 12.1 shows the interfaces (classes whose name begins with "I") which must be implemented in

order for the conversion process to function.

The conversion process is essentially a collaboration between the following types:

¥ IConversionSvc

¥ IConverter

¥ IOpaqueAddress

For each persistent technology, or Ònon-transientÓ representation, a specific conversion service is

required. This is illustrated in the figure by the class AConversionSvc which implements the

IConversionSvc interface.

A given conversion service will have at its disposal a set of converters. These converters are both type

and technology specific. In other words a converter knows how to convert a single transient type (e.g.

MuonHit) into a single persistent type (e.g. RootMuonHit) and vice versa. Specific converters

implement the IConverter interface, possibly by extending an existing converter base class.

Figure 12.1 The classes (and interfaces) collaborating in the conversion process.

AConversionSvc

Converter

IConverter

createObj()

updateObj()

fillObjRefs()

AConverter1

AConverter2

AConverter3

 IConversionSvc

AOpaqueAddress

IOpaqueAddress

clID()

svcType()

page 146

A third collaborator in this process are the opaque address objects. A concrete opaque address class

must implement the IOpaqueAddress interface. This interface allows the address to be passed

around between the transient data service, the persistency service, and the conversion services without

any of them being able to actually decode the address. Opaque address objects are also technology

specific. The internals of an OdbcAddress object are different from those of a RootAddress

object.

Only the converters themselves know how to decode an opaque address. In other words only converters

are permitted to invoke those methods of an opaque address object which do not form a part of the

IOpaqueAddress interface.

Converter objects must be ÒregisteredÓ with the conversion service in order to be usable. For the

ÒstandardÓ converters this will be done automatically . For user defined converters (for user defined

types) this registration must be done at initialisation time (see Section 7.10).

12.4 The conversion process

As an example (see Figure 12.1) we consider a request from the event data service to the persistency

service for an object to be loaded from a data file.

As we saw previously, the persistency service has one conversion service slave for each persistent

technology in use. The persistency service receives the request in the form of an opaque address object.

The svcType() method of the IOpaqueAddress interface is invoked to decide which conversion

service the request should be passed onto. This returns a Òtechnology identifierÓ which allows the

persistency service to choose a conversion service.

The request to load an object (or objects) is then passed onto a specific conversion service. This service

then invokes another method of the IOpaqueAddress interface, clID() , in order to decide which

converter will actually perform the conversion. The opaque address is then passed onto the concrete

converter who knows how to decode it and create the appropriate transient object.

The converter is specific to a specific type, thus it may immediately create an object of that type with

the new operator. The converter must now ÒunpackÓ the opaque address, i.e. make use of accessor

methods specific to the address type in order to get the necessary information from the persistent store.

For example, a ZEBRA converter might get the name of a bank from the address and use that to locate

the required information in the ZEBRA common block. On the other hand a ROOT converter may

extract a file name, the names of a ROOT TTree and an index from the address and use these to load

an object from a ROOT file. The converter would then use the accessor methods of this ÒpersistentÓ

object in order to extract the information necessary to build the transient object.

We can see that the detailed steps performed within a converter depend very much on the nature of the

non-transient data and (to a lesser extent) on the type of the object being built.

page 147

Chapter 12 Converters Version/Issue: 8.0.0

If all transient objects were independent, i.e. if there were no references between objects then the job

would be finished. However in general objects in the transient store do contain references to other

objects.

These references can be of two kinds:

Figure 12.1 A trace of the creation of a new transient object.

createObj(OA)

AConversionSvc AOpaqueAddress AConverter DB/File

clID()

createObj(OA)

DataObject

"unpack"

Id

"access(es)"

pointers into

persistent file/DB

data to build

transient object

new

return reference to DataObject

DataObject

setX()

setY()

page 148

i. ÒMacroscopicÓ references appear as separate ÒleavesÓ in the data store. They have to be

registered with a separate opaque address structure in the data directory of the object being

converted. This must be done after the object was registered in the data store in the method

fillObjRefs().

ii. Internal references must be handled differently. There are two possibilities for resolving

internal references:

1. Load on demand. If the object the reference points to should only be loaded when

accessed, the pointer must no longer be a raw C++ pointer, but rather a smart pointer

object containing itself the information for later resolution of the reference. This is

the preferred solution for references to objects within the same data store (e.g.

references from Monte-Carlo tracks to Monte-Carlo vertices) and is generated by the

Object Description Tools when a relation tag is found in the XML class description

(see Section 7.9).

2. Filling of raw C++ pointers. This is only necessary if the object points to an object in

another store, e.g. the detector data store, and should be avoided in classes foreseen

to be made persistent. To resolve the reference a converter has to retrieve the other

object and set the raw pointer. These references should be set in the

fillObjRefs() method. This of course is more complicated, because it must be

ensured that both objects are present at the time the reference is accessed (i.e. when

the pointer is actually used).

page 149

Chapter 12 Converters Version/Issue: 8.0.0

12.5 Converter implementation - general considerations

After covering the ground work in the preceding sections, let us look exactly what needs to be

implemented in a specific converter class. The starting point is the Converter base class from which

a user converter should be derived.

The converter shown in Listing 12.1 is responsible for the conversion of UDO type objects into objects

that may be stored into an Objectivity database and vice-versa. The UDOCnv constructor calls the

Converter base class constructor with arguments which contain this information. These are the values

CLID_UDO, defined in the UDO class, and Objectivity_StorageType which is also defined

elsewhere. The first two extern statements simply state that these two identifiers are defined

elsewhere.

All of the Òbook-keepingÓ can now be done by the Converter base class. It only remains to fill in the

guts of the converter. If objects of type UDO have no links to other objects, then it suffices to implement

the methods createRep() for conversion from the transient form (to Objectivity in this case) and

createObj() for the conversion to the transient form.

If the object contains links to other objects then it is also necessary to implement the methods

fillRepRefs() and fillObjRefs() .

12.6 Storing Data using the ROOT I/O Engine

One possibility for storing data is to use the ROOT I/O engine to write ROOT files. Although ROOT by

itself is not an object oriented database, with modest effort a structure can be built on top to allow the

Listing 12.1 An example converter class

// Converter for class UDO.

extern const CLID& CLID_UDO;

extern unsigned char OBJY_StorageType;

static CnvFactory<UDOCnv> s_factory;

const ICnvFactory& UDOCnvFactory = s_factory;

class UDOCnv : public Converter {

public:

 UDOCnv(ISvcLocator* svcLoc) :

 Converter(Objectivity_StorageType, CLID_UDO, svcLoc) { }

 createRep(DataObject* pO, IOpaqueAddress*& a); // transient->persistent

 createObj(IOpaqueAddress* pa, DataObject*& pO); // persistent->transient

 fillObjRefs(...); // transient->persistent

 fillRepRefs(...); // persistent->transient

}

page 150

Converters to emulate this behaviour. In particular, the issue of object linking had to be solved in order

to resolve pointers in the transient world.

The concept of ROOT supporting paged tuples called trees and branches is adequate for storing bulk

event data. Trees split into one or several branches containing individual leaves with data.

The data structure within the Gaudi data store is also tree like. In the transient world Gaudi objects are

sub-class instances of the ÒDataObjectÓ. The DataObject offers some basic functionality like the

implicit data directory which allows e.g. to browse a data store. This tree structure will be mapped to a

flat structure in the ROOT file resulting in a separate tree representing each leaf of the data store. Each

data tree contains a single branch containing objects of the same type. The Gaudi tree is split up into

individual ROOT trees in order to give easy access to individual items represented in the transient

model without the need of loading complete events from the root file i.e. to allow for selective data

retrieval. The feature of ROOT supporting selective data reading using split trees did not seem too

attractive since, generally, complete nodes in the transient store should be made available in one go.

However, ROOT expects ÒROOTÓ objects, they must inherit from TObject. Therefore the objects

from the transient store have to be converted to objects understandable by ROOT.

The following sections are an introduction to the machinery provided by the Gaudi framework to

achieve the migration of transient objects to persistent objects. The ROOT specific aspects are not

discussed here; the ROOT I/O engine is documetned on the ROOT web site http://root.cern.ch). Note

that Gaudi only uses the I/O engine, not all ROOT classes are available. Within Gaudi the ROOT I/O

engine is implemented in the GaudiRootDb package.

12.7 The Conversion from Transient Objects to ROOT Objects

As for any conversion of data from one representation to another within the Gaudi framework,

conversion to/from ROOT objects is based on Converters. The support of a ÒgenericÓ Converter

accesses pre-defined entry points in each object. The transient object converts itself to an abstract byte

stream. However, for specialized objects specific converters must be built.

Whenever objects must change their representation within Gaudi, data converters are involved. For the

ROOT case, the converters must have some knowledge of ROOT internals and of the service finally

used to migrate ROOT objects (->TObject) to a file. They must be able to translate the functionality

of the DataObject component to/from the ROOT storage. Within ROOT itself the object is stored as

a Binary Large Object (BLOB).

The generic data conversion mechanism relies on two functionalities, which must be present:

¥ When writing or reading objects, the objectÕs data must be "serializable". The corresponding

persistent type is of a generic type, the data are stored as a machine independent byte stream.

This method is implemented automatically if the class is described using the Gaudi Object

Description tools (described in Section 7.7 on page 7). When reading objects, an empty object

must be created before any de-serialization can take place. The constructor must be called.

This functionality does not imply any knowledge of the conversion mechanism itself and

http://root.cern.ch

page 151

Chapter 12 Converters Version/Issue: 8.0.0

hence can be encapsulated into an object factory simply returning a DataObject. These data

object factories are distinguished within Gaudi through the persistent data type information,

the class ID. For this reason the class ID of objects, which are written must only depend on the

object type, i.e. every class needs it’s own class ID. The instantiation of the appropriate factory

is done by a macro. Please see the RootIO example for details how to instantiate the factory.

12.8 Storing Data using other I/O Engines

Once objects are stored as BLOBs, it is possible to adopt any storage technology supporting this

datatype. This is the case not only for ROOT, but also for

¥ Objectivity/DB

¥ most relational databases, which support an ODBC interface like

¥ Microsoft Access,

¥ Microsoft SQL Server,

¥ MySQL,

¥ ORACLE and others.

Note that although storing objects using these technologies is possible, there is currently no

implementation available in the Gaudi release. If you desperately want to use Objectivity or one of the

ODBC databases, please contact Markus Frank (Markus.Frank@cern.ch).

mailto:Markus.Frank@cern.ch

page 152

page 153

Chapter 13 Visualization Version/Issue: 8.0.0

Chapter 13

Visualization

13.1 Overview

This Chapter is in preparation.

page 154

page 155

Chapter 14 Framework packages, interfaces and libraries Version/Issue: 8.0.0

Chapter 14

Framework packages, interfaces and

libraries

14.1 Overview

It is clearly important to decompose large software systems into hierarchies of smaller and more

manageable entities. This decomposition can have important consequences for implementation related

issues, such as compile-time and link dependencies, configuration management, etc. A package is the

grouping of related components into a cohesive physical entity. A package is also the minimal unit of

software release.

In this chapter we describe the Athena package structure, and how these packages are implemented in

libraries. We also discuss abstract inerfaces, which are one of the main design features of Athena

14.2 Athena Package Structure

14.2.1 Packaging Guidelines

Packaging is an important architectural issue for the Gaudi framework, but also for the experiment

specific software packages based on Gaudi. Typically, experiment packages consist of:

¥ Specific event model

¥ Specific detector description

¥ Sets of algorithms (digitisation, reconstruction, etc.)

page 156

The packaging should be such as to minimise the dependencies between packages, and must absolutely

avoid cyclic dependencies. The granularity should not be too small or too big. Care should be taken to

identify the external interfaces of packages: if the same interfaces are shared by many packages, they

should be promoted to a more basic package that the others would then depend on. It is a good idea to

discuss your packaging with the librarian and/or architect.

14.3 Interfaces in Gaudi

One of the main design choices at the architecture level in Gaudi was to favour abstract interfaces when

building collaborations of various classes. This is the way we best decouple the client of a class from its

real implementation.

An abstract interface in C++ is a class where all the methods are pure virtual. We have defined some

practical guidelines for defining interfaces. An example is shown in Listing 14.1:

Listing 14.1 Example of an abstract interface (IService)

1: // $Header: $

2: #ifndef GAUDIKERNEL_ISERVICE_H

3: #define GAUDIKERNEL_ISERVICE_H

4:

5: // Include files

6: #include "GaudiKernel/IInterface.h"

7: #include <string>

8:

9: // Declaration of the interface ID. (id, major, minor)

10: static const InterfaceID IID_IService(2, 1, 0);

11:

12: /** @class IService IService.h GaudiKernel/IService.h

13:

14: General service interface definition

15:

16: @author Pere Mato

17: */

18: class IService : virtual public IInterface {

19: public:

20: /// Retrieve name of the service

21: virtual const std::string& name() const = 0;

22: /// Retrieve ID of the Service. Not really used.

23: virtual const IID& type() const = 0;

24: /// Initilize Service

25: virtual StatusCode initialize() = 0;

26: /// Finalize Service

27: virtual StatusCode finalize() = 0;

28: /// Retrieve interface ID

29: static const InterfaceID& interfaceID() { return IID_IService; }

30: };

31:

32: #endif // GAUDIKERNEL_ISERVICE_H

page 157

Chapter 14 Framework packages, interfaces and libraries Version/Issue: 8.0.0

From this example we can make the following observations:

¥ Interface Naming. The name of the class has to start with capital ÒIÓ to denote that it is an

interface.

¥ Derived from IInterface. We follow the convention that all interfaces should be derived from a

basic interface IInterface. This interface defined 3 methods: addRef(), release()

and queryInterface(). This methods allow the framework to manage the reference

counting of the framework components and the possibility to obtain a different interface of a

component using any interface (see Section 14.3.2).

¥ Pure Abstract Methods. All the methods should be pure abstract (virtual ReturnType

method(...) = 0;) With the exception of the static method interfaceID() (see

later) and some inline templated methods to facilitate the use of the interface by the end-user.

¥ Interface ID. Each interface should have a unique identification (see Section 14.3.1) used by

the query interface mechanism.

14.3.1 Interface ID

We needed to introduce an interface ID for identifying interfaces for the queryInterface functionality.

The interface ID is made of a numerical identifier (generated from the interface name by a hash

function) and major and minor version numbers. The version number is used to decide if the interface

the service provider is returning is compatible with the interface the client is expecting. The rules for

deciding if the interface request is compatible are:

¥ The interface identifier is the same

¥ The major version is the same

¥ The minor version of the client is less than or equal to the one of the service provider. This

allows the service provider to add functionality (incrementing minor version number) keeping

old clients still compatible.

The interface ID is defined in the same header file as the rest of the interface. Care should be taken of

globally allocating the interface identifier (by giving a unique name to the constructor), and of

modifying the version whenever a change of the interface is required, according to the rules. Of course

changes to interfaces should be minimized.

The static method Ixxx::interfaceID() is useful for the implementation of templated methods

and classes using an interface as template parameter. The construct T::interfaceID() returns the

interface ID of interface T.

static const InterfaceID IID_Ixxx("Ixxx" /*id*/, 1 /*major*/, 0 /*minor*/);

class Ixxx : public IInterface {

 . . .

 static const InterfaceID& interfaceID() { return IID_Ixxx; }

};

page 158

14.3.2 Query Interface

The method queryInterface() is used to request a reference to an interface implemented by a

component within the Gaudi framework. This method is implemented by each component class of the

framework and allows us to navigate from one interface of a component to another, as shown for

example in Listing 14.2, where we navigate from the IMessageSvc interface of the message service

to its IProperty interface, in order to discover the value of its "OutputLevel" property.

The implementation of queryInterface() is usually not very visible since it is done in the base

class from which you inherit. A typical implementation is shown in Listing 14.3:

The implementation returns the corresponding interface pointer if there is a match between the received

InterfaceID and the implemented one. The method versionMatch() takes into account the

rules mentioned in Section 14.3.1.

If the requested interface is not recognized at this level (line 9), the call can be forwarded to the

inherited base class or possible sub-components of this component.

Listing 14.2 Example usage of queryInterface to navigate between interfaces

1: IMessageSvc* msgSvc();

2: ...

3: IProperty* msgProp;

4: msgSvc()->queryInterface(IID_IProperty, (void**)&msgProp);

5: std::string dfltLevel;

6: StatusCode scl = msgProp->getProperty("OutputLevel", dfltLevel);

Listing 14.3 Example implementation of queryInterface()

1: StatusCode DataSvc::queryInterface(const InterfaceID& riid,

2: void** ppvInterface) {

3: if (IID_IDataProviderSvc.versionMatch(riid)) {

4: *ppvInterface = (IDataProviderSvc*)this;

5: }

6: else if (IID_IDataManagerSvc.versionMatch(riid)) {

7: *ppvInterface = (IDataManagerSvc*)this;

8: }

9: else {

10: return Service::queryInterface(riid, ppvInterface);

11: }

12: addRef();

13: return SUCCESS;

14: }

page 159

Chapter 14 Framework packages, interfaces and libraries Version/Issue: 8.0.0

14.4 Libraries in Athena

Three different sorts of library can be identified that are relevant to the framework. These are

component libraries, linker (or installed) libraries and dual-use libraries. These libraries are used for

different purposes and are built in different ways.

14.4.1 Component libraries

Component libraries are shared libraries that contain standard framework components which

implement abstract interfaces. Such components are Algorithms, Auditors, Services, Tools or

Converters. These libraries do not export their symbols apart from one which is used by the framework

to discover what components are contained by the library. Thus component libraries should not be

linked against; they are used purely at run-time, being loaded dynamically upon request, the

configuration being specified by the job options file. Changes in the implementation of a component

library do not require the application to be relinked.

Component libraries contain factories for their components, and it is important that the factory entries

are declared and loaded correctly. The following sections describe how this is done.

When a component library is loaded, the framework attempts to locate a single entrypoint, called

getFactoryEntries(). This is expected to declare and load the component factories from the

library. Several macros are available to simplify the declaration and loading of the components via this

function.

Consider a simple package MyComponents, that declares and defines the MyAlgorithm class,

being a subclass of Algorithm, and the MyService class, being a subclass of Service. Thus the

package will contain the header and implementation files for these classes (MyAlgorithm.h,

MyAlgorithm.cpp, MyService.h and MyService.cpp) in addition to whatever other files

are necessary for the correct functioning of these components.

In order to satisfy the requirements of a component library, two additional files must also be present in

the package. One is used to declare the components, the other to load them. Because of the technical

limitations inherent in the use of shared libraries, it is important that these two files remain separate,

and that no attempt is made to combine their contents into a single file.

The names of these files and their contents are described in the following sections.

page 160

14.4.1.1 Declaring Components

Components within the component library are declared in a file MyComponents_entries.cpp.

By convention, the name of this file is the package name concatenated with _entries. The contents

of this file are shown below:

14.4.1.2 Component declaration statements

The complete set of statements that are available for declaring components is given below. They

include those that support C++ classes in different namespaces, as well as for DataObjects or

ContaineData Objectects using the generic converters.

Listing 14.4 The MyComponents_entries.cpp file

#include "GaudiKernel/DeclareFactoryEntries.h"

DECLARE_FACTORY_ENTRIES(MyComponents) { [1]

 DECLARE_ALGORITHM(MyAlgorithm); [2]

 DECLARE_SERVICE (MyService);

}

Notes:

1. The argument to the DECLARE_FACTORY_ENTRIES statement is the name of the

component library.

2. Each component within the library should be declared using one of the DECLARE_XXX

statements discussed in detail in the next Section.

Listing 14.5 The available component declaration statements

DECLARE_ALGORITHM(X)

DECLARE_AUDITOR(X)

DECLARE_CONVERTER(X)

DECLARE_GENERIC_CONVERTER(X) [1]

DECLARE_OBJECT(X)

DECLARE_SERVICE(X)

DECLARE_NAMESPACE_ALGORITHM(N,X) [2]

DECLARE_NAMESPACE_AUDITOR(N,X)

DECLARE_NAMESPACE_CONVERTER(N,X)

DECLARE_NAMESPACE_GENERIC_CONVERTER(N,X)

DECLARE_NAMESPACE_OBJECT(N,X)

DECLARE_NAMESPACE_SERVICE(N,X)

page 161

Chapter 14 Framework packages, interfaces and libraries Version/Issue: 8.0.0

14.4.1.3 Loading Components

Components within the component library are loaded in a file MyComponents_load.cpp. By

convention, the name of this file is the package name concatenated with _load. The contents of this

file are shown below:

14.4.1.4 CMT requirements file fragment to create a component library

The fragment of the package requirements file that creates a component library is shown below:.

Notes:

1. Declarations of the form DECLARE_GENERIC_CONVERTER(X) are used to declare the

generic converters for DataObject and ContaineData Objectect classes. For

DataObject classes, the argument should be the class name itself (e.g. EventHeader),

whereas for ContaineData Objectect classes, the argument should be the class

name concatenated with either List or Vector (e.g. CellVector) depending on

whether the objects are associated with an ObjectList or ObjectVector.

2. Declarations of this form are used to declare components from explicit C++ namespaces.

The first argument is the namespace (e.g. Atlfast), the second is the class name (e.g.

CellMaker).

Listing 14.5 The available component declaration statements

Listing 14.6 The MyComponents_load.cpp file

#include "GaudiKernel/LoadFactoryEntries.h"

LOAD_FACTORY_ENTRIES(MyComponents) [1]

Notes:

1. The argument of LOAD_FACTORY_ENTRIES is the name of the component library.

Listing 14.7 Creating a component library

library MyPackage <list of files> [1][2][3]

apply_pattern component_library [3]

page 162

14.4.1.5 Specifying component libraries at run-time

The fragment of the job options file that specifies the component library at run-time is shown below.

The convention in Gaudi is that component libraries have the same name as the package they belong to

(prefixed by "lib" on Linux). When trying to load a component library, the framework will look for it

in various places following this sequence:

Ñ Look for an environment variable with the name of the package, suffixed by "Shr" (e.g.

${MyComponentsShr}). If it exists, it should translate to the full name of the library,

without the file type suffix (e.g. ${MyComponentsShr}

="$MYSOFT/MyComponents/v1/i386_linux22/libMyComponents").

Ñ Try to locate the file libMyComponents.so using the LD_LIBRARY_PATH (on Linux),

or MyComponents.dll using the PATH (on Windows).

Notes:

1. The normal convention is for the library name to be the same as the package name.

2. The <list of files> can either be an explicit list of files as shown, or wildcards may

be used:

 library MyPackage *.cxx

3. Source files not located in the package src/ directory can be specified using the

-s=<directory> option, which specifies a directory path relative to the src/

directory:

 library MyPackage *.cxx -s=components *.cxx

4. The component_library pattern operates on the library specified in the previous

library statement.

Listing 14.7 Creating a component library

Listing 14.8 Specifying a component library at run-time

ApplicationMgr.DLLs += { "MyComponents" }; [1]

Notes:

1. This is a list property, allowing multiple such libraries to be specified in a single line.

2. It is important to use the Ò+=Ó syntax to append the new component library or libraries to

any that might already have been configured.

page 163

Chapter 14 Framework packages, interfaces and libraries Version/Issue: 8.0.0

14.4.2 Linker (or installed) libraries

These are libraries containing implementation classes. For example, libraries containing code of a

number of base classes or specific classes without abstract interfaces, etc. These libraries, contrary to

the component libraries, export all the symbols and are needed during the linking phase in the

application building. These libraries can be linked to the application "statically" or "dynamically",

requiring a different file format. In the first case the code is added physically to the executable file. In

this case, changes in these libraries require the application to be re-linked, even if these changes do not

affect the interfaces. In the second case, the linker only adds into the executable minimal information

required for loading the library and resolving the symbols at run time. Locating and loading the proper

shareable library at run time is done exclusively using the LD_LIBRARY_PATH for Linux and PATH

for Windows. The convention in Gaudi is that linker libraries have the same name as the package,

suffixed by "Lib" (and prefixed by "lib" on Linux, e.g. libMyPackageLib.so).

14.4.2.1 CMT requirements file fragment to create a linker or installed library

The fragment of the package requirements file that creates a linker (or installed) library is shown

below:..

Listing 14.9 Creating a linker/installled library

library MyPackage <list of files> [1][2][3]

apply_pattern installed_library [3]

Notes:

1. The normal convention is for the library name to be the same as the package name.

2. The <list of files> can either be an explicit list of files as shown, or wildcards may

be used:

 library MyPackage *.cxx

3. Source files not located in the package src/ directory can be specified using the

-s=<directory> option, which specifies a directory path relative to the src/

directory:

 library MyPackage *.cxx -s=components *.cxx

4. The installed_library pattern operates on the library specified in the previous

library statement.

page 164

14.4.3 Dual use libraries

Because component libraries are not designed to be linked against, it is important to separate the

functionalities of these libraries from linker libraries. For example, consider the case of a DataProvider

service that provides DataObjects for clients. It is important that the declarations and definitions of the

DataObjects be handled by a different shared library than that handling the service itself. This implies

the presence of two different packages - one for the component library, the other for the DataObjects.

Clients should only depend on the second of these packages. Obviously the package handling the

component library will in general also depend on the second package.

It is possible to have dual purpose libraries - ones which are simultaneously component and linker

libraries. In general such libraries will contain DataObjects and ContainedData Objects, together with

their converters and associated factories. It is recommended that such dual purpose libraries be

separated from single purpose component or linker libraries. Consider the case where several

Algorithms share the use of several DataObjects (e.g. where one Algorithm creates them and registers

them with the transient event store, and another Algorithm locates them), and also share the use of some

helper classes in order to decode and manipulate the contents of the DataObjects. It is recommended

that three different packages be used for this - one pure component package for the Algorithms, one

dual-purpose for the DataObjects, and one pure linker package for the helper classes.

14.4.3.1 CMT requirements file fragment to create a dual use library

The fragment of the package requirements file that creates a dual use library is shown below:.

Listing 14.10 Creating a dual use library

apply_pattern dual_use_library files="MyFile1.cxx MyFile2.cxx"

Notes:

1. The normal convention is for the library name to be the same as the package name.

2. The list of files can either be an explicit list of files as shown, or wildcards may be used:

 library MyPackage *.cxx

3. Two component declaration files must exist in the src/components directory. They

are:

 Pkg_entries.cxx

 Pkg_load.cxx

These have the same content as described in Section 14.4.1 for component libraries.

4. Factory code as described in Section 3.3.1 should be removed from the Algorithm, Service,

Tool or Converter header file.

page 165

Chapter 14 Framework packages, interfaces and libraries Version/Issue: 8.0.0

14.4.4 Linking FORTRAN code

Any library containing FORTRAN code (more specifically, code that references COMMON blocks)

must be linked statically. This is because COMMON blocks are, by definition, static entities. When

mixing C++ code with FORTRAN, it is recommended to build separate libraries for the C++ and

FORTRAN, and to write the code in such a way that communication between the C++ and FORTRAN

worlds is done exclusively via wrappers. This makes it possible to build shareable libraries for the C++

code, even if it calls FORTRAN code internally.

page 166

page 167

Chapter 15 Analysis utilities Version/Issue: 8.0.0

Chapter 15

Analysis utilities

15.1 Overview

In this chapter we give pointers to some of the third party software libraries that we use within Athena

or recommend for use by algorithms implemented in Athena.

15.2 CLHEP

CLHEP (ÒClass Library for High Ener gy PhysicsÓ) is a set of HEP-specific foundation and utility

classes such as random generators, physics vectors, geometry and linear algebra. It is structured in a set

of packages independent of any external package. The documentation for CLHEP can be found on

WWW at http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

CLHEP is used extensively inside Athena, in the GaudiSvc and GaudiDb packages.

15.3 ROOT

ROOT is used by Athena for I/O and as a persistency solution for event data, histograms and n-tuples.

In addition, it can be used for interactive analysis, as discussed in Chapter 9. Information about ROOT

can be found at http://root.cern.ch/

http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html
http://root.cern.ch/

page 168

page 169

Appendix A Options for standard components Version/Issue: 8.0.0

Appendix A

Options for standard components

The following is a list of options that may be set for the standard components: e.g. data files for input,

print-out level for the message service, etc. The options are listed in tabular form for each component

along with the default value and a short explanation. The component name is given in the table caption

thus: [ComponentName]. Note the used syntax in defaults is now obsolete b/c of the move to python.:.

Table A.1 Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning

EvtSel "" If "NONE", no event inputa

EvtMax -1 Maximum number of events to process. The default is -1 (infi-

nite) unless EvtSel = "NONE"; in which case it is 10.

TopAlg {} List of top level algorithms. Format:

{<Type>/<Name>[, <Type2>/<Name2>,...]};

ExtSvc {} List of external services to be explicitly created by the Applica-

tionMgr (see section 10.2). Format:

{<Type>/<Name>[, <Type2>/<Name2>,...]};

OutStream {} Declares an output stream object for writing data to a persistent

store, e.g. {ÒDstW riterÓ}; See also Table A.10

DLLs {} Search list of libraries for dynamic loading. Format:

{<dll1>[,<dll2>,...]};

HistogramPersistency "NONE" Histogram and N-tuple persistency mechanism.

Available options are "HBOOK", "ROOT", "NONE"

Runable "AppMgrRunable" Type of runable object to be created by Application manager

page 170

EventLoop "EventLoopMgr" Type of event loop:

"EventLoopMgr" is standard event loop

"MinimalEventLoop" executes algorithms but does not read

events

OutputLevel MSG::INFO Same as MessageSvc.OutputLevel.

See Table A.2 for possible values

The last two options define the source of the job options file and so they cannot be defined in the job options file

itself. There are two possibilities to set these options, the first one is using a environment variable called

JOBOPTPATH or setting the option to the application manager directly from the main programb. The coded

option takes precedence.

JobOptionsType ÒFILEÓ Type of file (FILE implies ascii)

JobOptionsPath ÒjobOptions.txtÓ Path for job options source

a. A basic DataObject object is created as event root ("/Event")

b. The setting of properties from the main program is discussed in Chapter 2.

Table A.2 Standard Options for the message service [MessageSvc]

Option name Default value Meaning

OutputLevel 0 Verboseness threshold level:

0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,

4=WARNING, 5=ERROR, 6=FATAL,

7=ALWAYS

Format Ò% F%18W%S%7W%R%T

%0W%MÓ

Format string.

Table A.3 Standard Options for all algorithms [<myAlgorithm>]

Any algorithm derived from the Algorithm base class can override the global Algorithm options thus:

Option name

Default

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Enable true If false, application manager skips execution of this algorithm

ErrorMax 1 Job stops when this number of errors is reached

Table A.1 Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning

page 171

Appendix A Options for standard components Version/Issue: 8.0.0

ErrorCount 0 Current error count

AuditInitialize false Enable/Disable auditing of Algorithm initialisation

AuditExecute true Enable/Disable auditing of Algorithm execution

AuditFinalize false Enable/Disable auditing of Algorithm finalisation

Table A.4 Standard Options for all services [<myService>]

Any service derived from the Service base class can override the global MessageSvc.OutputLevel thus:

Option

name

Default

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Table A.5 Standard Options for all Tools [<myTool>]

Any tool derived from the AlgTool base class can override the global MessageSvc.OutputLevel thus:

Option

name

Default

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Table A.6 Standard Options for all Associators [<myAssociator>]

Option name Default value Meaning

FollowLinks true Instruct the associator to follow the links instead of using cached information

DataLocation "" Location where to get association information in the data store

Table A.7 Standard Options for Auditor service [AuditorSvc]

Option name

Default

value Meaning

Auditors {}; List of Auditors to be loaded and to be used.

See section 10.7 for list of possible auditors

Table A.3 Standard Options for all algorithms [<myAlgorithm>]

Any algorithm derived from the Algorithm base class can override the global Algorithm options thus:

Option name

Default

value Meaning

page 172

Table A.8 Standard Options for all Auditors [<myAuditor>]

Any Auditor derived from the Auditor base class can override the global Auditor options thus:

Option name

Default

value Meaning

OutputLevel 0 Message Service Verboseness threshold level. See Table A.2 for possible values

Enable true If false, application manager skips execution of the auditor

Table A.9 Options of Algorithms in GaudiAlg package (see Section 3.5)

Algorithm name Option Name Default value Meaning

EventCounter Frequency 1; Frequency with which number of events should

be reported

Prescaler PercentPass 100.0; Percentage of events that should be passed

Sequencer Members Names of algorithms in the sequence

Sequencer BranchMembers Names of algorithms on the branch

Sequencer StopOverride false; If true, do not stop sequence if a filter fails

Table A.10 Options available for output streams (e.g. DstWriter)

Output stream objects are used for writing user created data into data files or databases. They are created and

named by setting the option ApplicationMgr.OutStream . For each output stream the following options are

available

Option name Default value Meaning

ItemList {} The list of data objects to be written to this stream, e.g.

{Ò/Event#1Ó,ÓEvent/MyT racks/#1Ó};

Preload true; Preload items in ItemList

Output "" Output data stream specification. Format:

{ÒDATAFILE=’mydst.root’ TYP=’ROOT’Ó};

OutputFile "" Output file specification - same as DATAFILE in previous option

EvtDataSvc ÒEventDataSvcÓ The service from which to retrieve objects.

EvtConversion-

Svc

"EventPersisten-

cySvc"

The persistency service to be used

AcceptAlgs {} If any of these algorithms sets filterflag=true; the event is

accepted

RequireAlgs {} If any of these algorthms is not executed, the event is rejected

VetoAlgs {} If any of these algorithms does not set filterflag = true; the event is

rejected

page 173

Appendix A Options for standard components Version/Issue: 8.0.0

Table A.11 Standard Options for persistency services (e.g. EventPersistencySvc)

Option name Default value Meaning

CnvServices {} Conversion services to be used by the service to load or

store persistent data (e.g. "RootEvtCnvSvc")

Table A.12 Standard Options for conversion services (e.g. RootEvtCnvSvc)

Option name Default value Meaning

DbType "" Persistency technology (e.g. "ROOT")

Table A.13 Standard Options for the standard event selector [EventSelector]

Option name Default value Meaning

Input {} Input data stream specification.

Format: "<tagname> = Õ<tagvalue>Õ <opt>"

Possible tags are different depending on input data type.

For Event data, see Section 7.10.2

FirstEvent 1 First event to process (allows skipping of preceding events)

PrintFreq 10 Frequency with which event number is reported

Table A.14 Event Tag Collection Selector [EventCollectionSelector]

The following options are used internally by the EventCollectionSelector. They should not normally be used

directly by users, who should set them via the "tags" of the EventSelector.Input option

Option name

Corresponding tag of

EventSelector.Input Default value Meaning

CnvService SVC ÒEvtT upleSvcÓ Conversion service to be used

Authentication AUTH "" Authentication to be used

Container "B2PiPi" Container name

Item "Address" Item name

Criteria SEL "" Selection criteria

DB DATAFILE "" Database name

DbType TYP "" Database type

Function FUN "NTuple::Selector" Selection function

page 174

Table A.15 Standard Options for Random Numbers Generator Service [RndmGenSvc]

Option name Default value Meaning

Engine ÒHepRndm::Engine<RanluxEngine>Ó Random number generator engine

Seeds Table of generator seeds

Column 0 Number of columns in seed table -1

Row 1 Number of rows in seed table -1

Luxury 3 Luxury value for the generator

UseTable false Switch to use seeds table

Table A.16 Standard Options for Particle Property Service [ParticlePropertySvc]

Option name Default value Meaning

ParticlePropertiesFile Ò($LHCBDBASE)/cdf/particle.cdfÓ Particle properties database location

Table A.17 Standard Options for Chrono and Stat Service [ChronoStatSvc]

Option name Default value Meaning

ChronoPrintOutTable true Global switch for profiling printout

PrintUserTime true Switch to print User Time

PrintSystemTime false Switch to print System Time

PrintEllapsedTime false Switch to print Elapsed time (Note typo in option name!)

ChronoDestinationCout false If true, printout goes to cout rather than MessageSvc

ChronoPrintLevel 3 Print level for profiling (values as for MessageSvc)

ChronoTableToBeOrdered true Switch to order printed table

StatPrintOutTable true Global switch for statistics printout

StatDestinationCout false If true, printout goes to cout rather than MessageSvc

StatPrintLevel 3 Print level for profiling (values as for MessageSvc)

StatTableToBeOrdered true Switch to order printed table

page 175

Appendix A Options for standard components Version/Issue: 8.0.0

A.1 Obsolete options

The following options are obsolete and should not be used. They are documented here for completeness

and may be removed in a future release.

Table A.18 Obsolete Options

Obsolete Option Replacement

EventSelector.EvtMax ApplicationMgr.EvtMax (Table A.1)

page 176

page 177

Appendix B Design considerations Version/Issue: 8.0.0

Appendix B

Design considerations

B.1 Generalities

In this chapter we look at how you might actually go about designing and implementing a real physics

algorithm. It includes points covering various aspects of software development process and in

particular:

¥ The need for more Òthinking before codingÓ when using an OO language like C++.

¥ Emphasis on the specification and analysis of an algorithm in mathematical and natural

language, rather than trying to force it into (unnatural?) object orientated thinking.

¥ The use of OO in the design phase, i.e. how to map the concepts identified in the analysis

phase into data objects and algorithm objects.

¥ The identification of classes which are of general use. These could be implemented by the

computing group, thus saving you work!

¥ The structuring of your code by defining private utility methods within concrete classes.

When designing and implementing your code we suggest that your priorities should be as follows: (1)

Correctness, (2) Clarity, (3) Efficiency and, very low in the scale, OOness

Tips about specific use of the C++ language can be found in the coding rules document [11] or

specialized literature.

http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps
http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps

page 178

B.2 Designing within the Framework

A physicist designing a real physics algorithm does not start with a white sheet of paper. The fact that

he or she is using a framework imposes some constraints on the possible or allowed designs. The

framework defines some of the basic components of an application and their interfaces and therefore it

also specifies the places where concrete physics algorithms and concrete data types will fit in with the

rest of the program. The consequences of this are: on one hand, that the physicists designing the

algorithms do not have complete freedom in the way algorithms may be implemented; but on the other

hand, neither do they need worry about some of the basic functionalities, such as getting end-user

options, reporting messages, accessing event and detector data independently of the underlying storage

technology, etc. In other words, the framework imposes some constraints in terms of interfaces to basic

services, and the interfaces the algorithm itself is implementing towards the rest of the application. The

definition of these interfaces establishes the so called Òmaster wallsÓ of the data processing application

in which the concrete physics code will be deployed. Besides some general services provided by the

framework, this approach also guarantees that later integration will be possible of many small

algorithms into a much larger program, for example a reconstruction program. In any case, there is still

a lot of room for design creativity when developing physics code within the framework and this is what

we want to illustrate in the next sections.

To design a physics algorithm within the framework you need to know very clearly what it should do

(the requirements). In particular you need to know the following:

¥ What is the input data to the algorithm? What is the relationship of these data to other data

(e.g. event or detector data)?

¥ What new data is going to be produced by the algorithm?

¥ WhatÕs the purpose of the algorithm and how is it going function? Document this in terms of

mathematical expressions and plain english.1

¥ What does the algorithm need in terms of configuration parameters?

¥ How can the algorithm be partitioned (structured) into smaller Òalgorithm chunksÓ that make

it easier to develop (design, code, test) and maintain?

¥ What data is passed between the different chunks? How do they communicate?

¥ How do these chunks collaborate together to produce the desired final behaviour? Is there a

controlling object? Are they self-organizing? Are they triggered by the existence of some

data?

¥ How is the execution of the algorithm and its performance monitored (messages, histograms,

etc.)?

¥ Who takes the responsibility of bootstrapping the various algorithm chunks.

For didactic purposes we would like to illustrate some of these design considerations using a

hypothetical example. Imagine that we would like to design a tracking algorithm based on a

Kalman-filter algorithm.

1. Catalan is also acceptable.

page 179

Appendix B Design considerations Version/Issue: 8.0.0

B.3 Analysis Phase

As mentioned before we need to understand in detail what the algorithm is supposed to do before we

start designing it and of course before we start producing lines of C++ code. One old technique for that,

is to think in terms of data flow diagrams, as illustrated in Figure A.1, where we have tried to

decompose the tracking algorithm into various processes or steps.

In the analysis phase we identify the data which is needed as input (event data, geometry data,

configuration parameters, etc.) and the data which is produced as output. We also need to think about

the intermediate data. Perhaps this data may need to be saved in the persistency store to allow us to run

a part of the algorithm without starting always from the beginning.

We need to understand precisely what each of the steps of the algorithm is supposed to do. In case a step

becomes too complex we need to sub-divide it into several ones. Writing in plain english and using

Figure A.1 Hypothetical decomposition of a tracking algorithm based on a Kalman filter using a Data flow Diagram

find seeds

form / refine

track

segment

pad hits

extrapolate

to next

station

seeds

proto-tracks

select/discard

proto-track

proto-tracks

proto-track

station hits

Event Data store

station hits

produce

tracks

proto-tracks

tracks

Geometry store

geometry

geometry

geometry

page 180

mathematics whenever possible is extremely useful. The more we understand about what the algorithm

has to do the better we are prepared to implement it.

B.4 Design Phase

We now need to decompose our physics algorithm into one or more Algorithms (as framework

components) and define the way in which they will collaborate. After that we need to specify the data

types which will be needed by the various Algorithms and their relationships. Then, we need to

understand if these new data types will be required to be stored in the persistency store and how they

will map to the existing possibilities given by the object persistency technology. This is done by

designing the appropriate set of Converters. Finally, we need to identify utility classes which will help

to implement the various algorithm chunks.

B.4.1 Defining Algorithms

Most of the steps of the algorithm have been identified in the analysis phase. We need at this moment to

see if those steps can be realized as framework Algorithms. Remember that an Algorithm from the view

point of the framework is basically a quite simple interface (initialize, execute, finalize) with a few

facilities to access the basic services. In the case of our hypothetical algorithm we could decide to have

a ÒmasterÓ Algorithm which will orchestrate the work of a number of sub-Algorithms. This master

Algorithm will be also be in charge of bootstraping them. Then, we could have an Algorithm in charge

of finding the tracking seeds, plus a set of others, each one associated to a different tracking station in

charge of propagating a proto-track to the next station and deciding whether the proto-track needs to be

kept or not. Finally, we could introduce another Algorithm in charge of producing the final tracks from

the surviving proto-tracks.

It is interesting perhaps in this type of algorithm to distribute parts of the calculations (extrapolations,

etc.) to more sophisticated ÒhitsÓ than just the unintelligent original ones. This could be done by

instantiating new data types (clever hits) for each event having references to the original hits. For that,

it would be required to have another Algorithm whose role is to prepare these new data objects, see

Figure A.2.

The master Algorithm (TrackingAlg) is in charge of setting up the other algorithms and scheduling their

execution. It is the only one that has a global view but it does not need to know the details of how the

different parts of the algorithm have been implemented. The application manager of the framework

only interacts with the master algorithm and does not need to know that in fact the tracking algorithm is

implemented by a collaboration of Algorithms.

B.4.2 Defining Data Objects

The input, output and intermediate data objects need to be specified. Typically, the input and output are

specified in a more general way (algorithm independent) and basically are pure data objects. This is

page 181

Appendix B Design considerations Version/Issue: 8.0.0

TrackingAlg

HitPreprocessor

Hit

HitSet

Hit
Hit

nHitSet

nHit
nHit

nHit

SeedFinder

StationProcessorStationProcessor
StationProcessor

StationProcessor

Tracker

ProtoTrack

Set

PTrack
PTrack

Track

Set

PTrack
PTrack

PTrackPTrack

Event Data Store

Algorithm

TrackingAlg

HitPreprocessor

SeedFinder

StationProcessor

Tracker

HitSet

DataObject

Hit

nHitSet nHit

TackSet Track

ProtoTack

Set
PTrack

HitSet

Station

IAlgorithm

page 182

because they can be used by a range of different algorithms. We could have various types of tracking

algorithm all using the same data as input and producing similar data as output. On the contrary, the

intermediate data types can be designed to be very algorithm dependent.

The way we have chosen to communicate between the different Algorithms which constitute our

physics algorithm is by using the transient event data store. This allows us to have low coupling

between them, but other ways could be envisaged. For instance, we could implement specific methods

in the algorithms and allow other ÒfriendÓ algorithms to use them directly .

Concerning the relationships between data objects, it is strongly discouraged to have links from the

input data objects to the newly produced ones (i.e. links from hits to tracks). In the other direction this

should not be a problem (i.e from tracks to constituent hits).

For data types that we would like to save permanently we need to implement a specific Converter. One

converter is required for each type of data and each kind of persistency technology that we wish to use.

This is not the case for the data types that are used as intermediate data, since these data are completely

transient.

B.4.3 Mathematics and other utilities

It is clear that to implement any algorithm we will need the help of a series of utility classes. Some of

these classes are very generic and they can be found in common class libraries. For example the

standard template library. Other utilities will be more high energy physics specific, especially in cases

like fitting, error treatment, etc. We envisage making as much use of these kinds of utility classes as

possible.

Some algorithms or algorithm-parts could be designed in a way that allows them to be reused in other

similar physics algorithms. For example, perhaps fitting or clustering algorithms could be designed in a

generic way such that they can be used in various concrete algorithms. During design is the moment to

identify this kind of re-usable component or to identify existing ones that could be used instead and

adapt the design to make possible their usage.

page 183

Appendix C Job Options Grammar Version/Issue: 8.0.0

Appendix C

Job Options Grammar

C.1 The EBNF grammar of the Job Options files

The syntax of the Job-Options-File is defined through the following EBNF-Grammar.

Job-Options-File =

{Statements} .

Statements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} | {Platform-Dependency} .

AssertableStatements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} .

AssertionStatement =

Õ#ifdef Õ | Õ#ifndef Õ .

Platform-Dependency =

page 184

AssertionStatement ÕWIN32Õ <AsertableStatements> [#else <AssertableStatements>] #endif

Include-Statement =

Ô#includeÕ string .

Assign-Statement =

Identifier Ô.Õ Identifier Ô=Õ value Ô;Õ .

Append-Statement =

Identifier Ô.Õ Identifier Ô+=Õ value Ô;Õ .

Identifier =

letter {letter | digit} .

value =

boolean | integer | double | string | vector .

vector =

Ô{Õ vectorvalue { Ô,Õ vectorvalue } Ô}Õ .

vectorvalue =

boolean | integer | double | string .

boolean =

ÔtrueÕ | ÔfalseÕ .

page 185

Appendix C Job Options Grammar Version/Issue: 8.0.0

integer =

prefix scientificdigit .

double =

(prefix <digit> Ô.Õ [scientificdigit]) |

(prefix Ô.Õ scientificdigit) .

string =

ÔÓÕ {char} ÔÓÕ .

scientificdigit =

< digit> [(ÔeÕ | ÔEÕ) < digit>] .

digit =

<figure> .

prefix =

[Ô+Õ | Ô-Õ] .

figure =

Ô0Õ | Ô1Õ | Ô2Õ | Ô3Õ | Ô4Õ | Ô5Õ | Ô6Õ | Ô7Õ | Ô8Õ | Ô9Õ.

char =

any character from the ASCII-Code

letter =

set of all capital- and non-capital letter

page 186

C.2 Job Options Error Codes and Error Messages

The table below lists the error codes and error messages that the Job Options compiler may generate,

their reason and how to avoid them.

Table 15.1 Possible Error-Codes

Error-Code Reason How to avoid it

Error #000 Internal compiler error - This code normally should never

appear. If this code is shown there

is maybe a problem with your

memory, your disk-space or the

property-file is corrupted.

Error #001 Included property-file

does not exists or can not be

opened

* wrong path in #include-directive

* wrong file or mistyped filename

* file is exclusively locked by

another application

* no memory available to open this

file

Please check if any of the listed

reasons occured in your case.

Warning #001 File already

included by another file

The file was already included by

another file and will not be

included a second time.

The compiler will ignore this

#include-directive and will con-

tinue with the next statement.

Remove the #include-directive

Error #002 syntax error: Object

expected

The compiler expected an object at

the given position.

Maybe you mistyped the name of

the object or the object contains

unknown characters or does not fit

the given rules.

Error #003 syntax error: Missing

dot between Object and Property-

name

The compiler expect a dot between

the Object and the Propertyname.

Check if the dot between the

Object and the Propertyname is

missing.

Error #004 syntax error: Identifier

expected

The compiler expected an identifier

at the given position.

Maybe you mistyped the name of

the identifier or the identifier con-

tains unknown characters or does

not fit the given rules.

Error #005 syntax error: Missing

operator Õ+=Õ or Õ=Õ

The compiler expected an operator

between the Propertyname and the

value.

Check if there is a valid operator

after the Propertyname.

Note that a blank or tab is not

allowed between Õ+=Õ!

page 187

Appendix C Job Options Grammar Version/Issue: 8.0.0

Error #006 String is not terminated

by a Ò

A string (value) was not terminated

by a Ò.

Check if all your strings are begin-

ning and ending with Ò. Note that

the position given by the compiler

can be wrong because the compiler

may thought that following state-

ments are part of the string!

Error #007 syntax error:

#include-statement is not correct

The next token after the #include is

not a string.

Make sure that after the

#include-directive there is speci-

fied the file to include. The file

must be defined as a string!

Error #008 syntax error: #include

does not end with a ;

The include-directive was termi-

nated by a ;

Remove the ; after the

#include-directive.

Error #009 syntax error: Values

must be separated with Õ,Õ

One or more values within a vector

were not separated with a Õ,Õ or one

ore more values within a vector are

mistyped.

Check if every value in the vector

is separated by a Õ,Õ. If so the rea-

son for this message may result in

mistyped values in the vector

(maybe there is a blank or tab

between numbers).

Error #010 syntax error: Vector

must end with Õ}Õ

The closing bracket is missing or

the vector is not terminated cor-

rectly.

Check, if the vector ends with a Õ}Õ

and if there is no semicolon before

the ending-bracket.

Error #011 syntax error: Statement

must end with a ;

The statement is not terminated

correctly.

Check if the statement ends with a

semicolon Õ;Õ.

Runtime-Error #012: Cannot

append to object because it does

not exists

The compiler cannot append the

values to the object.propertyname

because the object does not exist.

Check if the refered object is

defined in one of the included files,

if so check if you writed the

object-name exactly like in the

include-file.

Runtime-Error #013 Cannot

append to object because Property

does not exists

The compiler cannot append the

values to the object.propertyname

because the property does not exist.

Check if there was already some-

thing assigned to the refered prop-

erty (in the include-file or in the

current file). If not then modify the

append-statement into a

assign-statement.

If there was already something

assigned, check if the object-name

and the property-name are typed

correctly.

Table 15.1 Possible Error-Codes

Error-Code Reason How to avoid it

page 188

Error #014 Elements in the vector

are not of the same type

One or more elements in the vector

have a different type than the first

element in the vector. All elements

must have the same type like the

first declarated element.

Check declaration of vector, check

the types and check, if maybe a

value is mistyped.

Error #015 Value(s) expected The compiler didnÕt find values to

append or assign

Check the statement if there exists

values and if they are written cor-

rectly.

Maybe this error is a result of a

previous error!

Error #016 Specified property-file

does not exist or can not be

resolved

The compiler was not able to

include a property-file or didnÕt

found the file.

A reason can be that the compiler

was not able to resolve an environ-

ment-variable which points to the

location of the property-file.

Check if you are using enviorn-

ment-variables to resolve the file, if

they are mistyped (wether in the

system or in the #include-directive)

or not set correctly.

Error #017 #ifdef not followed by

an identifier

The #ifdef-statement is not fol-

lowed by the assertion-identifier

(WIN32).

Add WIN32 after the #ifdef-state-

ment.

Error #018 identifier in #ifdef /

#ifndef not known

The assertion-identifier used in the

#ifdef- /#ifndef-statement is not

known. At the moment there can

only be used WIN32!

Change identifier to WIN32.

Error #019 #ifdef / #ifndef / #else /

#endif doesnÕt end with a Õ;Õ

A semicolon was found after the

#ifdef- / #ifndef- / #else- /

#endif-statement. These state-

ments donÕt end with a semicolon.

Remove the semicolon after the

#ifdef / #ifndef / #else /

#endif-statement.

Table 15.1 Possible Error-Codes

Error-Code Reason How to avoid it

page 189

Appendix D The ATLAS Development Model Version/Issue: 8.0.0

Appendix D

The ATLAS Development Model

D.1 Overview

The ATLAS development model is described, together with the tools and concepts that are necessary in

order to perform software development.

D.2 Packages

ATLAS software is organized into packages. A package corresponds to a CVS module, but more

conceptually to a coherent set of source code and header files that is managed and accessed as a unit.

Source code from one package can depend upon code in another one, typically through the inclusion of

a C++ header (.h) file, and such dependencies are managed at the level of the package. Thus if any one

file in one package depends upon any one file in another one,the first package is said to depend upon

the second.

The following different types of packages appear in the ATLAS software repository:

¥ Code packages. These packages contain source code (.cxx and .h) files, although several

legacy FORTRAN packages exist. In most cases a code package is designed to create a library

or application.

¥ Policy packages. These packages setup the environment (e.g. compiler version and options)

for the processing of other packages. They typically do not contain any source code, but just

setup macros and environment variables.

page 190

¥ Container packages. These packages provide a mechanism by which other packages may be

logically grouped together and operated on as a single unit. In some cases a container package

corresponds to a directory hierarchy within CVS, but that is not always the case. A container

packagecan ceate a view into a set of other packages, where multiple views may be created.

Thus one view might organize the software in terms of each detector subsystem, whereas

another viewmight organize the software in terms of the processing phase (e.g. Simulation,

Reconstruction).

¥ Interface or Glue packages. These packages provide a mechanism for accessing external

software, software which is not developed by ATLAS, but is rather installed and managed as a

unit.

Each package is associated with a version (typically of the form pkg-ii-jj-kk, where i, j and j are

integers), which is used to identify the state of the package at a snapshot in time. The act of specifying

a new version is known as tagging the package. Once a package has reached a certain levelof stability,

it can be made known to the Tag Collector [ref] so that it may become part of a release (see

Appendix D.3).

D.3 Releases

An ATLAS release is a self-consistent snapshot of the software (both internal ATLAS-produced and

externally supplied) at an instant at time. The following is a shortened version of the ATLAS release

policy, the full version of which is given online at

[http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/Release/Policies/ReleasePolicies.html].

The following types of releases are supported:

¥ Nightly release. A total of 7 nightly releases is created, one every 24 hours, starting at

approximately midnight GMT. Each release has a lifetime of 7 days before it is overwritten,

allowing developers time to understand and fix problems.

¥ Developer release. A developer release is built approximately every three weeks.

¥ Production release.

¥ Bug-fix release.

¥ Base release. A release that is being used as a baseline for testing new code is called a base

release. Any of the nightly, developer, production and bug-fix releases can be used in such a

way in conjunction with a test release.

¥ Test release. A test release is a set of packages (one or more) that are being tested in

conjunction with a base release. A test release may provide as little as setting up of a run-time

environment, or as much as the checkout of several packages.

page 191

Appendix D The ATLAS Development Model Version/Issue: 8.0.0

D.4 CMT - the Configuration Management Tool

D.5 Establishing a login environment

D.6 Setting up a test release

page 192

page 193

Appendix E Package and Directory Structure Version/Issue: 8.0.0

Appendix E

Package and Directory Structure

E.1 Subsystem Package Organization

In the following, Xxx is some sensible subdivision of the system - detector subsystem, tracking, particle

id,etc.

A finer subdivision of packages is also supported, if this minimizes dependencies or overloading of a

single package, thus.

Similarly for Algorithms and Conditions data. Possibilities for Algorithms could be phases of the

reconstruction chain, or separating those associated with the generation of calibrations from those

associated with normal event processing etc. Similarly Conditions data could separate out calibration

from alignment data.

In the above, a utility or helper class is an algorithmic class that can be used by classes from multiple

other packages. If they are designed to be used by a particular Algorithm or Service, they can reside in

XxxAlgs Algorithms (and optionally helper classes)

XxxSvc A Service (and optionally helper classes)

XxxUtils Utility/Helper classes (optional)

XxxEvent Event data

XxxDetDescr Detector Description data

XxxConditions Conditions data

Figure 15.1 Package Organization

XxxSimEvent

XxxRawEvent

XxxRecEvent

Figure 15.2 Alternative Package Organization

page 194

the same package as that. However, if they have a more general usefulness, they should reside in

separate packages, perhaps not even as part of the Xxx subsystem, but in a more general package

structure (e.g. Tools or Utilities).

E.2 Utilities Package Directory Structure

The structure for packages that contain classes that are utility or helper or algorithmic code is as follows

(using XxxUtils as an example):

Notes:

1. These packages create a shared library that is designed to be linked against.

2. The installed_library pattern for shared libraries should be used as described in

Appendix 14.4.2.

E.3 Algorithm and Service Package Directory Structure

The structure for packages that declare Algorithms or Services is as follows (using XxxAlgs as an

example):

Notes:

1. These packages should use one of two patterns:

1. component_library - for simple component libraries

2. dual_use_library - for Algorithms or Services that are capable of being

inherited from.

Thesze are described in detail in Appendix 14.4.1 and Appendix 14.4.3.

XxxUtils/cmt Normal CMT directory

 /XxxUtils Public Header files

 /src All source files and private header files

Figure 15.3 Utilities Package Directory Structure

XxxAlgs/cmt Normal CMT directory

 /XxxAlgs Public Header files

 /src All source files and private header files

 /src/components Component library .cxx files

 /share Job Options files etc.

 [this name is historical from SRT days]

Figure 15.4 Algorithm and Service Package Directory Structure

page 195

Appendix E Package and Directory Structure Version/Issue: 8.0.0

E.4 Data Package Directory Structure

The structure for the XxxEvent, XxxDetDescr and XxxConditions packages is as follows (using

XxxEvent as an example):

Notes:

XxxEvent/cmt Normal CMT directory.

 /XxxEvent Header .h files

 /src Source .cxx files

 /src/components Component library .cxx files

Figure 15.5 Data PackagePackage Directory Structure

page 196

page 197

Appendix F Standard ATLAS Patterns and Variables Version/Issue: 8.0.0

Appendix F

Standard ATLAS Patterns and Variables

F.1 Overview

This appendix describes the standard ATLAS patterns that are declared in the AtlasPolicy package.

F.2 Platform Environment Variables

Standard values of the CMTCONFIG environment variable

CMTCONFIGPlatform Compiler Options

--------- -------- -------- -------

Linux-gcc-dbg Linux gcc 2.95.2 debug

Linux-gcc-opt Linux gcc 2.95.2 optimized (-O2)

Linux-gcc-prof Linux gcc 2.95.2 profiled (-pg) optimized (-O2)

Solaris-gcc-dbg Solaris CC 5.1/2 debug

Solaris-gcc-opt Solaris CC 5.1/2 optimized (O2)

Solaris-gcc-prof Solaris CC 5.1/2 profiled (-pg) optimized (-O2)

page 198

The current Solaris compiler, although reporting itself as CC 5.1, has been patched to the CC 5.2

functionality.

F.3 Patterns controlling include paths

include_path

 Useage:

 apply_pattern include_path [extras="<dirs>"]

 Description:

 Adds the list of directories specified by the "extras"

 argument to the -I include search path. The directories

 should be specified relative to the cmt/ directory.

no_include_path

 Useage:

 apply_pattern no_include_path

 Description:

 Disables the default -I include path such that none is

 setup. This pattern may be combined with the "include_path"

 pattern to override the default include search path.

page 199

Appendix F Standard ATLAS Patterns and Variables Version/Issue: 8.0.0

F.4 Patterns controlling library creation

installed_library

component_library

dual_use_library

These are described in the Appendix "Installed, Component and Dual Use Libraries".

default_library

default_installed_library

F.5 Patterns controlling linker options

default_linkopts

default_no_share_linkopts

installed_linkopts

F.6 Patterns for establishing a run-time environment

declare_runtime

page 200

 Useage:

 apply_pattern declare_runtime [extras="<files>"]

 Description:

 Declares that the .txt and .py files in the share/

 directory should be installed in the target run/

 directory. This default may be extended by specifying

 the optional "extras" argument.

declare_runtime_extras

 Useage:

 apply_pattern declare_runtime_extras [extras="<files>"]

 Description:

 Similar to "declare_runtime" but does not declare any

 files by default. The list of run-time files should

 be declared using the "extras" argument.

install_runtime

 Useage:

 declare_pattern install_runtime

 Description:

 Creates the run/ directory in the calling package, and

installs all files that were declared by other packages

page 201

Appendix F Standard ATLAS Patterns and Variables Version/Issue: 8.0.0

using the "declare_runtime" or "declare_runtime_extras"

patterns.

page 202

page 203

Appendix G References Version/Issue: 8.0.0

Appendix G

References

[1] GAUDI User Guide

http://lhcb-comp.web.cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf

[2] GAUDI - Architecture Design Report [LHCb 98-064 COMP]

[3] HepMC Reference

[4] Python Reference

[5] StoreGate Design Document

page 204

page 205

 Version/Issue: 8.0.0

A
Algorithm 15

Base class 15, 21
branches 29
Concrete 21, 25
Constructor 23, 25
Declaring properties 24
Execution 26
Filters 29
Finalisation 26
Initialisation 23, 26
Nested 28
sequences 29
Setting properties 24

Algorithms
EventCounter 30, 102
Prescaler 30
Sequencer 29

Application Manager 16
Architecture 13
Associators 138

Example 141
B
Branches 29
C
Checklist

for implementing algorithms 28
CLHEP 167
Component 13, 159

libraries 159, 162
Converters 143
D
Data Store

Histograms 95
DataObject 15
DECLARE_ALGORITHM 160
DECLARE_FACTORY_ENTRIES 160
E
endreq, MsgStream manipulator 110
EventCounter algorithm. See Algorithms
Examples

Associator 141

page 206

F
Factory

for a concrete algorithm 24
Filters 29
FORTRAN 15

and shareable libraries 165
G
getFactoryEntries 159
Guidelines

for software packaging 155
H
Histograms

data service 95, 97
I
Inheritance 21
Interface 13

and multiple inheritance 17
Identifier 18, 157
In C++ 17

Interfaces
IAlgorithm 17, 21, 23, 26
IAlgTool 132
IAssociator 138
IAuditor 118
IConversionSvc 145
IConverter 145
IDataManagerSvc 16
IDataProviderSvc 16
IHistogramSvc 17
IIncidentListener 121
IMessageSvc 17
in Gaudi 156
INtupleSvc 17
IOpaqueAddress 145
IParticlePropertySvc 111
IProperty 17, 22
IRunable 18
ISvcLocator 23
IToolSvc 136
Navigating between 158

Introspection 123
J
Job Options

see also Properties

page 207

 Version/Issue: 8.0.0

Job options 101
L
Libraries

Component 159, 162
containing FORTRAN code 165
Linker 163

LOAD_FACTORY_ENTRIES 161
M
Message service 108
Monitoring

of algorithm calls, with the Auditor service 117
statistical, using the Chrono&stat service 115

Monte Carlo truth
navigation using Associators 138

N
N-tuples 97
P
Packages

Dependencies of Gaudi 155
Guidelines 155

Prescaler algorithm. See Algorithms
Profiling

of execution time, using the Chrono&Stat service 114
of execution time, with the Auditor service 117
of memory usage, with the Auditor service 117

Properties
Accessing and Modifying 104

R
Random numbers

generating 118
Service 118

Retrieval 136
ROOT 167
S
Sequencer algorithm. See Algorithms
Sequences 29
Services 16

Auditor Service 116
Chrono&Stat service 113
Histogram data service 95, 97
Incident service 121
Introspection service 123
Job Options service 101

page 208

Message Service 108
Particle Properties Service 110
Random numbers service 118
requesting and accessing 99
ToolSvc 129, 135
vs. Tools 129

StatusCode 26
T
Tools 129

Associators 138
provided in Gaudi 137
vs. Services 129

ToolSvc, see Services

	Athena
	The ATLAS Common Framework

	European Laboratory for Particle Physics Laboratoire Européen pour la Physique des Particules CH-1211 Genève 23 - Suisse
	Table of Contents

	Chapter 1 Introduction
	1.1 Purpose of the document
	1.2 Athena and GAUDI
	1.2.1 Document organization

	1.3 Conventions
	1.3.1 Units
	1.3.2 Coding Conventions
	1.3.3 Naming Conventions
	1.3.4 Conventions of this document

	1.4 Release Notes
	1.5 Reporting Problems
	1.6 User Feedback

	Chapter 2 The framework architecture
	2.1 Overview
	2.2 Why architecture?
	Figure 2.1 Gaudi Architecture Object Diagram

	2.3 Data versus code
	2.4 Main components
	Figure 2.1 The main components of the framework as seen by an algorithm object

	2.5 Controlling and Scheduling
	2.5.1 Application Bootstrapping
	Figure 2.1 Control and Scheduling collaboration

	2.5.2 Algorithm Scheduling

	Chapter 3 Writing algorithms
	3.1 Overview
	3.2 Algorithm base class
	Listing 3.1 The definition of the Algorithm base class.
	1: class Algorithm : virtual public IAlgorithm, virtual public IProperty {
	2: public:
	3: // Constructor and destructor
	4: Algorithm(const std::string& name, ISvcLocator *svcloc);
	5: virtual ~Algorithm();
	6:
	7: // IAlgorithm interface only partially implemented
	8: StatusCode sysInitialize();
	9: StatusCode sysExecute();
	10: StatusCode sysFinalize();
	11: StatusCode beginRun();
	12: StatusCode endRun();
	13: const std::string& name() const;
	14:
	15: virtual bool isExecuted() const;
	16: virtual StatusCode setExecuted(bool state);
	17: virtual StatusCode resetExecuted();
	18: virtual bool isEnabled() const;
	19: virtual bool filterPassed() const;
	20: virtual StatusCode setFilterPassed(bool state);
	21:
	22: // Service accessors
	23: template<class T> StatusCode service(const std::string& name, T*& svc, bool createIf = false);
	24: void setOutputLevel(int level);
	25: IMessageSvc* msgSvc() const;
	26: IAuditorSvc* auditorSvc() const;
	27: IDataProviderSvc* eventSvc() const;
	28: IConversionSvc* eventCnvSvc() const;
	29: IDataProviderSvc* detSvc() const;
	30: IConversionSvc* detCnvSvc() const;
	31: IHistogramSvc* histoSvc() const;
	32: INtupleSvc* ntupleSvc() const;
	33: IChronoStatSvc* chronoSvc() const;
	34: IRndmGenSvc* randSvc() const;
	35: IToolSvc* toolSvc() const;
	36: ISvcLocator* serviceLocator() const;
	37:
	38: StatusCode createSubAlgorithm(const std::string& type, const std::string& name, Algorithm*& pSubAlg);
	39: std::vector<Algorithm*>* subAlgorithms() const;
	40:
	41: // IProperty interface
	42: virtual StatusCode setProperty(const Property& p);
	43: virtual StatusCode setProperty(std::istream s&);
	44:
	45: virtual StatusCode setProperty(const std::string& n, const std::string& v);
	46: virtual StatusCode getProperty(Property* p) const;
	47: const Property& getProperty(const std::string& name) const;
	48: virtual StatusCode getProperty(const std::string& n, std::string& v) const;
	49: const std::vector<Property*>& getProperties() const;StatusCode setProperties();
	50: template <class T> StatusCode declareProperty(const std::string& name, T& property);
	51: StatusCode declareRemoteProperty(const std::string& name, IProperty* rsvc, const std::string& rname = "") const;
	52: /// Methods for IInterface
	53: unsigned long addRef();
	54: unsigned long release();
	55: StatusCode queryInterface(const IID& riid, void**);
	56:
	57: protected:
	58: bool isInitialized() const;
	59: void setInitialized();
	60: bool isFinalized() const;
	61: void setFinalized();
	62: private:
	63: // Data members not shown
	64: Algorithm(const Algorithm& a); // NO COPY ALLOWED
	65: Algorithm& operator=(const Algorithm& rhs); // NO ASSIGNMENT ALLOWED};

	Constructor and Destructor
	The IAlgorithm interface
	Service accessor methods
	Creation of sub algorithms
	Declaration and setting of properties
	Filtering

	3.3 Derived algorithm classes
	3.3.1 Creation (and algorithm factories)
	3.3.2 Declaring properties
	Listing 3.2 Declaring member variables as properties.
	1: //------- In the header file --------------------------------------//
	2: class TriggerDecision : public Algorithm {
	3:
	4: private:
	5: bool m_passAllMode;
	6: int m_muonCandidateCut;
	7: std::vector m_ECALEnergyCuts;
	8: }
	9: //------- In the implementation file -------------------------------//
	10: static const AlgFactory<TriggerDecision> s_factory;
	11: const IAlgFactory& TriggerDecisionFactory = s_factory;
	12:
	13: TriggerDecision::TriggerDecision(std::string name, ISvcLocator *pSL) :
	14: Algorithm(name, pSL), m_passAllMode(false), m_muonCandidateCut(0) {
	15: m_ECALenergyCuts.push_back(0.0);
	16: m_ECALenergyCuts.push_back(0.6);
	17:
	18: declareProperty(“PassAllMode”, m_passAllMode);
	19: declareProperty(“MuonCandidateCut”, m_muonCandidateCut);
	20: declareProperty(“ECALEnergyCuts”, m_ECALEnergyCuts);
	21: }
	22:
	23: StatusCode TriggerDecision::initialize() {
	24: }

	3.3.3 Implementing IAlgorithm
	Initialization
	Figure 3.1 Algorithm initialization.

	Execution
	Finalization

	3.4 Nesting algorithms
	3.5 Algorithm sequences, branches and filters
	3.5.1 Filtering example
	Listing 3.3 Example job options using Sequencers demonstrating filtering
	1: ApplicationMgr.DLLs += { "GaudiAlg" };
	2: ApplicationMgr.TopAlg = { "Sequencer/TopSequence" };
	3:
	4: // Setup the next level sequencers and their members
	5: TopSequence.Members = {"Sequencer/Sequence1", "Sequencer/Sequence2"};
	6: TopSequence.StopOverride = true;
	7: Sequence1.Members = {"Prescaler/Prescaler1", "HelloWorld", "EventCounter/Counter1"};
	8: Sequence2.Members = {"Prescaler/Prescaler2", "HelloWorld", "EventCounter/Counter2"};
	9:
	10: Prescaler1.PercentPass = 50.;
	11: Prescaler2.PercentPass = 10.;

	3.5.2 Sequence branching
	Listing 3.4 Example job options using Sequencers demonstrating branching
	1: ApplicationMgr.DLLs += { "GaudiAlg" };
	2: ApplicationMgr.TopAlg = { "Sequencer" };
	3:
	4: // Setup the next level sequencers and their members
	5: Sequencer.Members = {"HelloWorld", "Prescaler", "EventCounter/Counter1"};
	6: Sequencer.BranchMembers = {"Prescaler", "EventCounter/Counter2"};
	7:
	8: Prescaler.PercentPass = 80.;

	Listing 3.5 Example job options using Sequencers demonstrating inverted logic
	1: ApplicationMgr.DLLs += { "GaudiAlg" };
	2: ApplicationMgr.TopAlg = { "Sequencer/Seq1", "Sequencer/Seq2" };
	3:
	4: // Setup the next level sequencers and their members
	5: Seq1.Members = {"HelloWorld", "Prescaler", "EventCounter/Counter1"};
	6: Seq2.Members = {"HelloWorld", "Prescaler:invert", "EventCounter/Counter2"};
	7:
	8: Prescaler.PercentPass = 80.;

	Chapter 4 Scripting
	4.1 Disclaimer
	4.2 Overview
	4.3 Python overview
	4.4 Using Python scripting
	1. Use the ‘athena.py’ script to run Athena/GAUDI from Python.
	2. Replace, on the command line, the job options text file with a Python script.
	3. Use a job options text file which hands control over to the Python shell once the initial configuration has been established.

	4.4.1 Using Python to drive Athena
	Listing 4.1 Using Python to drive Athena
	1. When the script is run with no arguments, it will look for the default jobOptions.txt file, start up Athena, and if it found the default file, run it. If it didn’t find any default file, it will present you with the Python prompt and you c...
	2. Same as [1], except that an explicit job options text file is specified. The file must exist (if it doesn’t, the script will exit) and Athena is run in batch mode.
	3. Any number of Python scripts can be run, the file extension .py is used to detect Python scripts. The scripts are executed in order and the first is expected to call ‘theApp.setup(MONTECARLO)’ or ‘theApp.setup(ZEBRA)’, depending on you...

	1. Start the debugger with ‘python’ as the executable: gdb python
	2. Specify the program arguments: (gdb) set args -itx athena.py [<scripts>]
	3. Run the program like you’re used to: (gdb) run

	4.4.2 Using a Python script for configuration and control
	Listing 4.2 Using a Python script for job configuration
	1. The file extension .py is used to identify the job options file as a Python script. All other extensions are assumed to be job options text files.

	4.4.3 Using a job options text file for configuration with a Python interactive shell
	Listing 4.3 Job Options text file entries to enable Python scripting
	1. This entry specifies the component library that implements Python scripting. If other DLLs are specified first, then care should be taken to use the +=operator syntax in order not to overwrite the other component libraries.
	2. This entry specifies the use of the Python scripting implementation as the run manager.
	Listing 4.4 Specifying a job options file for application execution

	4.5 Prototype functionality
	1. The ability to read and store basic Properties for framework components (Algorithms, Services, Auditors) and the main ApplicationMgr that controls the application. Basic properties are basic type data members (int, float, etc.) or SimplePr...
	2. The ability to retrieve and store individual elements of array (list) properties.
	3. The ability to specify a new set of top level Algorithms.
	4. The ability to add new services and component libraries and access their capabilities
	5. The ability to specify a new set of members or branch members for Sequencer algorithms.
	6. The ability to specify a new set of output streams.
	7. The ability to specify a new set of "AcceptAlgs", "RequireAlgs", or "VetoAlgs" properties for output streams.

	4.6 Property manipulation
	Listing 4.5 Property manipulation from the Python interactive shell
	1. The ">>>" is the Python shell prompt.
	2. The set of existing Algorithms is given by the theApp.algorithms() command.
	3. The set of existing Services is given by the theApp.services() command.
	4. The values of the properties for an Algorithm or Service may be displayed using the <name>.properties() command, where <name> is the name of the desired Algorithm or Service.
	5. The value of a single Property may be displayed (or used in a Python expression) using the <name>.<property> syntax, where <name> is the name of the desired Algorithm or Service, and <property> is the name of the desired Property.
	6. Single valued properties (e.g. IntegerProperty) may be set using an assignment statement. Boolean properties use integer values of 0 (or FALSE) and 1 (or TRUE). Strings are enclosed in "’" characters (single-quotes) or """ characters (double-quotes).
	7. Multi-valued properties (e.g. StringArrayProperty) are set using "[...]" as the array (list) delimiters.
	8. The theApp object corresponds to the ApplicationMgr and may be used to access its properties.

	4.7 Synchronization between Python and Athena
	Listing 4.6 Examples of Python commands that create new Algorithms or Services
	Listing 4.7 Examples of Python commands that create new Algorithms or Services
	1. This creates a new Python object of type Sequencer, having the same name as the newly created Athena Sequencer.
	2. This creates a new Python object of type Algorithm, having the same name as the newly created Athena Algorithm.
	Listing 4.8 Examples of Python commands that might create new Algorithms or Services

	4.8 Controlling job execution
	Listing 4.9 Python command to resume Athena execution
	1. This is a temporary command that will be replaced in a future release by a more flexible ability to access more functions of the ApplicationMgr. "nEvents" is the number of events that should be processed.
	Listing 4.10 Python command to terminate Athena execution
	Listing 4.11 Python batch script

	Chapter 5 StoreGate - the event data access model
	5.1 Overview
	5.2 The Data Model Architecture
	5.2.1 Data Objects and Algorithms
	5.2.2 StoreGate: the Atlas Transient Data Store
	5.2.2.1 Avoid User-defined Keys
	5.2.2.2 Work with User Types
	5.2.2.3 Control Object Access and Creation
	5.2.2.4 Support Inter-object Relationships

	5.3 Data Objects
	5.3.1 Using Containers as Data Objects
	5.3.1.1 View Containers
	5.3.1.2 Value Containers

	5.3.2 Describing Data Objects to SG
	5.3.3 Data Object Creation and Ownership of Data Objects

	5.4 Accessing Data Objects
	5.4.1 Recording a Data Object
	5.4.1.1 Locking a Data Object

	5.4.2 Retrieving a Data Object
	5.4.2.1 Retrieving the default instance of a given type
	5.4.2.2 Retrieving a keyed instance of a given type
	5.4.2.3 Retrieving a Data Object to modify it
	5.4.2.4 Retrieving {\em all} instances of a given type
	5.4.2.5 Checking if a Data Object is in the store

	5.5 Using DataLinks to persistify references
	5.5.1 Creating a DataLink to a data object
	5.5.1.1 Construct a DataLink using a C++ pointer
	5.5.1.2 Construct a DataLink using its StoreGate Key

	5.5.2 Creating a Link to an Element of a Container
	5.5.3 ElementLinks to other Containers
	5.5.4 Accessing DataLinks
	5.5.5 DataLinks Persistency

	5.6 History

	Chapter 6 Data dictionary
	6.1 Overview
	6.2 How to write/read data via POOL
	1. The objects to be stored in POOL must be "described" in a data dictionary which exists in memory when a program runs. As far as POOL is concerned, this dictionary contains the description of the types of all attributes for the objects to b...
	2. Objects are written and read to POOL via converters of the AthenaPoolCnvSvc. For most objects generic converters are sufficient, thus we have provided a CMT pattern which can be applied. (See generating converters.) However there are situa...
	3. Finally, one needs to specify the job options for reading and writing. This is described in setting up the joboptions.

	6.2.1 Creating a data dictionary filler
	1. Use the SimpleTrack packageas an example. The relevant portion of the requirements file is shown in Listing 6.1. You will need to add a use to AtlasSEAL and apply the pattern lcgdict. To do the latter, you need to create a <package>Dict.h ...
	Listing 6.1 Package SimpleTrack Requirements file
	2. Create a single <package>Dict.h which just includes the other header (.h) files. An example is shown in Listing 6.2:
	Listing 6.2 Example <package>Dict.h file

	3. Create a selection.xml file in the header directory and specify it as the selectionfile argument to the lcgdict pattern. The selection file contains a list of classes for each of the data member types. An example of this is shown in Listing 6.3.
	Listing 6.3 Example selection.xml file

	4. Not all data members are intended to be written out. For example, a class might have a pointer to an object that is only used in transient memory. If the value is not intended to be written out, then one should declare it transient, e.g. f...
	Listing 6.4 Specifying data member overrides

	5. You must specify the an "id" for all persistent data objects. (NOTE: we expect that this requirement to create an id will eventually be removed and no id will be needed.) For example,
	6. To check that the selection file is ok, you should run a check with the AthenaSealSvc which loads the SimpleTrackDict and checks all fields to see that their type is defined.
	Listing 6.5 Example of checking the selection file
	Listing 6.6 Job Options file
	Listing 6.7 Example session to check for missing classes
	Listing 6.8 Example session to check for missing classes
	Listing 6.9 Example session to check for missing classes

	6.2.2 generating converters
	Listing 6.10 Convert package requirements file

	6.2.3 writing custom converters
	6.2.3.1 when to use custom converters
	1. Modifying objects being read/written: For example when one declares attributes as transient in the selection.xml file they are not written out. When reading in the default constructor is called which may initialize the transient attributes...
	2. Fine control over what is written: In some situation, one needs fine control over the I/O. One example is the case of the InDetRawDataContainers for the InDet RDOs. These containers group RDOs into RDO collections, which are in turn stored...

	6.2.3.2 generate custom converter skeletons
	1. Specify the header file, e.g. MyClass.h, for which one wants a converter as described in generating converters in a converter package.
	2. Run gmake ONCE in the converter package. This will generate two files MyClassCnv.h and MyClassCnv.cxx in the ../pool directory of the package. You should move these files to the ../src directory, modify them as described below and save the...

	6.2.3.3 customizing the converter skeletons
	Listing 6.11 Converter skeletons
	Listing 6.12 Customized converter
	Listing 6.13 Customized converter

	6.2.3.4 detailed custom converter examples

	6.2.4 setting up the joboptions
	6.2.4.1 To write out data objects to POOL
	Listing 6.14 RecExCommon_jobOptions.txt

	6.2.4.2 To read back data objects from POOL
	Listing 6.15 RecExCommon_jobOptions.txt

	6.2.5 caveats, problems and work-arounds

	Chapter 7 Detector Description
	7.1 Overview
	7.2 About the Geometry Kernel Classes.
	7.3 Examples
	7.3.1 Example 1: Getting the data into the transient represention.
	Listing 7.1 Header file for ToyDetectorFactory
	Listing 7.2 Header file for ToyDetectorManager
	Listing 7.3 Implementation of ToyDetectorFactory

	7.3.2 Example 2: Getting the data out of the transient representation.

	7.4 An Overview of the Geometry Kernel
	Figure 7.1 The GeoModel Class Tree
	7.4.1 The Detector Store Service and Detector Managers
	7.4.2 Material Geometry
	7.4.3 Materials
	7.4.3.1 Shapes
	Listing 7.4 How to build a box
	Listing 7.5 How to build a polycone

	7.4.3.2 Logical Volumes
	7.4.3.3 Physical Volumes and the Geometry Graph
	7.4.3.4 Actions
	7.4.3.5 How Objects are Created and Destroyed
	Listing 7.6 Object creation

	7.4.4 Detector Specific Geometrical Services
	7.4.5 Alignment
	7.4.6 On Memory Use

	Chapter 8 Histogram facilities
	8.1 Overview

	Chapter 9 N-tuple and Event Collection facilities
	9.1 Overview

	Chapter 10 Framework services
	10.1 Overview
	10.2 Requesting and accessing services
	Listing 10.1 Job Option to create additional services
	Listing 10.2 Code to access the IParticlePropertySvc interface from an Algorithm

	10.3 The Job Options Service
	10.3.1 Algorithm, Tool and Service Properties
	10.3.1.1 SimpleProperties
	Listing 10.3 EventCounter.h
	1: #include "GaudiKernel/Algorithm.h"
	2: #include "GaudiKernel/Property.h"
	3: class EventCounter : public Algorithm {
	4: public:
	5: EventCounter(const std::string& name, ISvcLocator* pSvcLocator);
	6: ~EventCounter();
	7: StatusCode initialize();
	8: StatusCode execute();
	9: StatusCode finalize();
	10: private:
	11: IntegerProperty m_frequency;
	12: int m_skip;
	13: int m_total;
	14: };

	Listing 10.4 EventCounter.cpp
	1: #include "GaudiAlg/EventCounter.h"
	2: #include "GaudiKernel/MsgStream.h"
	3: #include "GaudiKernel/AlgFactory.h"
	4:
	5: static const AlgFactory<EventCounter> Factory;
	6: const IAlgFactory& EventCounterFactory = Factory;
	7:
	8: EventCounter::EventCounter(const std::string& name, ISvcLocator*
	9: pSvcLocator) :
	10: Algorithm(name, pSvcLocator),
	11: m_skip (0), m_total(0) {
	12: declareProperty("Frequency", m_frequency=1); // [1]
	13: m_frequency.verifier().setBounds(0, 1000); // [2]
	14: }
	15:
	16: StatusCode EventCounter::initialize() {
	17: MsgStream log(msgSvc(), name());
	18: log << MSG::INFO << "Frequency: " << m_frequency << endreq; // [3]
	19: return StatusCode::SUCCESS;
	20: }

	10.3.1.2 CommandProperty

	10.3.2 Accessing and modifiying properties
	10.3.3 Job options file format
	10.3.3.1 Assignment statement
	Boolean-type, written as true or false.
	Integer-type, written as an integer value (containing one or more of the digits ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’)
	Real-type (similar to double in C++), written as a real value (containing one or more of the digits ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’ followed by a dot ’.’ and optionally one or more of digits again)
	String type, written within a pair of double quotes (‘ ” ’)
	Vector of the types above, within array-brackets (’{’, ’}’), separated by a comma (’,’)

	10.3.3.2 Append Statement
	10.3.3.3 Including other Job Option Files
	10.3.3.4 Platform dependent execution
	Table 1

	10.3.3.5 Switching on/off printing
	1: // Switch off printing
	2: #pragma print off
	3: ..(some job options)
	4: //Switch printing back on
	5: #pragma print on

	10.4 The Standard Message Service
	Table 2
	Table 3
	10.4.1 The MsgStream utility
	Listing 10.5 Use of a MsgStream object.
	1: #include “GaudiKernel/MgsStream.h”
	2:
	3: StatusCode myAlgo::finalize() {
	4: StatusCode status = Algorithm::finalise();
	5: MsgStream log(msgSvc(), name());
	6: if (status.isFailure()) {
	7: // Print a two line message in case of failure.
	8: log << MSG::ERROR << “ Finalize failed” << endl
	9: << “Error initializing Base class.” << endreq;
	10: }
	11: else {
	12: log << MSG::DEBUG << “Finalize completed successfully” << endreq;
	13: }
	14: return status;
	15: }

	10.4.1.1 User interface
	Insertion Operator
	MsgStream& operator <<(TYPE arg);
	MsgStream& operator <<(MSG::Level level);
	Accepted Stream Manipulators
	endl
	ends
	flush
	endreq
	endmsg

	10.5 The Particle Properties Service
	10.5.1 Initialising and Accessing the Service
	Table 4

	10.5.2 Service Properties
	10.5.3 Service Interface
	Listing 10.6 The IParticlePropertySvc interface.
	Listing 1

	10.5.4 Examples
	Listing 10.7 Code fragment to find particle properties by particle name.
	Listing 10.8 Code fragment showing how to use the map iterators to access particle properties.

	10.6 The Chrono & Stat service
	10.6.1 Code profiling
	Listing 2
	Listing 3
	1: svc->chronoStop("Tag");
	2: svc->chronoStop("Tag");
	3: svc->chronoStart("Tag");
	4: svc->chronoStart("Tag");
	5: svc->chronoStop("Tag");
	6: svc->chronoStop("Tag");
	7: svc->chronoStart("Tag");
	8: svc->chronoStart("Tag");
	9: svc->chronoStop("Tag");

	10.6.2 Statistical monitoring
	Listing 4
	1: /// ... Flag and Weight to be accumulated:
	2: svc->stat(" Number of Tracks " , Flag , Weight);

	10.6.3 Chrono and Stat helper classes
	10.6.3.1 Chrono
	Listing 5
	1: #include GaudiKernel/Chrono.h
	2: /// ...
	3: { // begin of the scope
	4: Chrono chrono(chronoSvc() , "ChronoTag") ;
	5: /// some codes:
	6: ...
	7: ///
	8: } // end of the scope
	9: /// ...

	10.6.3.2 Stat
	Listing 6
	1: GaudiKernel/Stat.h
	2: /// ...
	3: Stat stat(chronoSvc() , "StatTag" , Flag , Weight) ;
	4: /// ...

	10.6.4 Performance considerations
	Listing 7
	1: /// ...
	2: { /// begin of the scope
	3: Chrono chrono(chronoSvc() , "Good Chrono"); /// OK
	4: long double a = 0 ;
	5: for(long i = 0 ; i < 1000000 ; ++i)
	6: {
	7: Chrono chrono(svc , "Bad Chrono"); /// not OK
	8: /// some codes :
	9: a += sin(cos(sin(cos((long double) i))));
	10: /// end of codes
	11: Stat stat (svc , "Bad Stat", a); /// not OK
	12: }
	13: Stat stat (svc , "Good Stat", a); /// OK
	14: } /// end of the scope!
	15: /// ...

	10.7 The Auditor Service
	10.7.1 Enabling the Auditor Service and specifying the enabled Auditors
	Table 5
	Table 6

	10.7.2 Overriding the default Algorithm monitoring
	Table 7

	10.7.3 Implementing new Auditors
	Table 8
	Table 9

	10.8 The Random Numbers Service
	Figure 10.1 The architecture of the random number service. The client requests from the service a random number generator satisfying certain criteria
	Listing 10.9 Example of the use of the random number generator to fill a histogram with a Gaussian distribution within a standard Athena algorithm
	1: Rndm::Numbers gauss(randSvc(), Rndm::Gauss(0.5,0.2));
	2: if (gauss) {
	3: IHistogram1D* his = histoSvc()->book("/stat/2","Gaussian",40,0.,3.);
	4: for (long i = 0; i < 5000; i++)
	5: his->fill(gauss(), 1.0);
	6: }

	Listing 10.10 Example of the use of the random number generator within a standard Athena algorithm, for use at every event. The wrapper to the generator is part of the Algorithm itself and must be initialized before being used. Afterwards the...
	1: #include "GaudiKernel/RndmGenerators.h"
	2:
	3: // Constructor
	4: class myAlgorithm : public Algorithm {
	5: Rndm::Numbers m_gaussDist;
	6: ...
	7: };
	8:
	9: // Initialisation
	10: StatusCode myAlgorithm::initialize() {
	11: ...
	1: StatusCode sc=m_gaussDist.initialize(randSvc(), Rndm::Gauss(0.5,0.2));
	2: if (!status.isSuccess()) {
	3: // put error handling code here...
	4: }
	5: ...
	6: }

	10.9 The Incident Service
	Table 10
	10.9.1 Known Incidents
	Table 10.1 Table of known named incidents

	10.10 The Gaudi Introspection Service
	Listing 10.11 CMT requirements for generation of data dictionary of the LHCbEvent package

	10.11 Developing new services
	10.11.1 The Service base class
	Figure 10.1 Implementation of a concrete service class. Though not shown in the figure, both of the IConcreteSvcType interfaces are derived from IInterface.

	10.11.2 Implementation details
	1. Define the interfaces
	2. Derive the concrete service class from the Service base class.
	3. Implement the queryInterface() method.
	4. Implement the initialize() method. Within this method you should make a call to Service::initialize() as the first statement in the method and also make an explicit call to setProperties() in order to read the service’s properties from the...
	Listing 10.12 An interface class
	Listing 10.13 A minimal service implementation

	Chapter 11 Tools and ToolSvc
	11.1 Overview
	11.2 Tools and Services
	11.2.1 “Private” and “Shared” Tools
	11.2.2 The Tool classes
	11.2.2.1 The AlgTool base class
	Listing 11.1 The definition of the AlgTool Base class. Highlighted in bold are methods relevant for the implementation of concrete tools.
	1: class AlgTool : public virtual IAlgTool,
	2: public virtual IProperty {
	3:
	4: public:
	5: // Standard Constructor.
	6: AlgTool(const std::string& type, const std::string& name, const IInterface* parent);
	7:
	8: ISvcLocator* serviceLocator() const;
	9: IMessageSvc* msgSvc() const;
	10:
	11: virtual StatusCode setProperty(const Property& p);
	12: virtual StatusCode setProperty(std::istream& s);
	13: virtual StatusCode setProperty(const std::string& n, const std::string& v);
	14: virtual StatusCode getProperty(Property* p) const;
	15: virtual const Property& getProperty(const std::string& name) const;
	16: virtual StatusCode getProperty(const std::string& n,std::string& v) const;
	17: virtual const std::vector<Property*>& getProperties() const;
	18:
	19: StatusCode setProperties();
	20:
	21: template <class T>
	22: StatusCode declareProperty(const std::string& name, T& property) const
	23:
	24: virtual const std::string& name() const;
	25: virtual const std::string& type() const;
	26: virtual const IInterface* parent() const;
	27:
	28: virtual StatusCode initialize();
	29: virtual StatusCode finalize();
	30:
	31: virtual StatusCode queryInterface(const IID& riid, void** ppvUnknown);
	32: void declInterface(const IID&, void*);
	33: template <class I> class declareInterface { public: template <class T> declareInterface(T* tool) }
	34:
	35: protected:
	36: // Standard destructor.
	37: virtual ~AlgTool();

	Constructor -
	Access to Services -
	Properties -
	IAlgTool Interface -
	Tools Interfaces -
	Concrete tools must implement additional interfaces that will inherit from IAlgTool. When a component implements more that one interface it is necessary to "recognize" the various interfaces. This is taken care of by the AlgTool base class on...

	11.2.2.2 Tools identification
	11.2.2.3 Concrete tools classes
	Figure 11.1 Tools class hierarchy

	11.2.2.4 Implementation of concrete tools
	Listing 11.2 Example of a concrete tool additional interface
	1: static const InterfaceID IID_IVertexSmearer("IVertexSmearer", 1 , 0);
	2:
	3: class IVertexSmearer : virtual public IAlgTool {
	4: public:
	5: /// Retrieve interface ID
	6: static const InterfaceID& interfaceID() { return IID_IVertexSmearer; }
	7: // Actual operator function
	8: virtual StatusCode smear(MyAxVertex*) = 0;
	9: };

	Listing 11.3 Example of a concrete tool minimal implementation header file
	1: #include "GaudiKernel/AlgTool.h"
	2: class VertexSmearer : public AlgTool, virtual public IVertexSmearer {
	3: public:
	4: // Constructor
	5: VertexSmearer(const std::string& type, const std::string& name, const IInterface* parent);
	6: // Standard Destructor
	7: virtual ~VertexSmearer() { }
	8: // specific method of this tool
	9: StatusCode smear(MyAxVertex* pvertex);

	Listing 11.4 Example of a concrete tool minimal implementation file
	1: #include "GaudiKernel/ToolFactory.h"
	2: // Static factory for instantiation of algtool objects
	3: static ToolFactory<VertexSmearer> s_factory;
	4: const IToolFactory& VertexSmearerFactory = s_factory;
	5:
	6: // Standard Constructor
	7: VertexSmearer::VertexSmearer(const std::string& type, const std::string& name, const IInterface* parent) : AlgTool(type, name, parent) {
	8:
	9: // Locate service needed by the specific tool
	10: m_randSvc = 0;
	11: if(serviceLocator()) {
	12: StatusCode sc=StatusCode::FAILURE;
	13: sc = serviceLocator()->service("RndmGenSvc", m_randSvc, true);
	14: }
	15: // Declare additional interface
	16: declareInterface<IVertexSmearer>(this);
	17:
	18: // Declare properties of the specific tool
	19: declareProperty("dxVtx", m_dxVtx = 9 * micrometer);
	20: declareProperty("dyVtx", m_dyVtx = 9 * micrometer);
	21: declareProperty("dzVtx", m_dzVtx = 38 * micrometer);
	22: }
	23: // Implement the specific method
	24: StatusCode VertexSmearer::smear(MyAxVertex* pvertex) {...}

	1. Define the specific interface (inheriting from the IAlgTool interface).
	2. Derive the tool class from the AlgTool base class
	3. Provide the constructor
	4. Declare the additional interface in the constructor.
	5. Implement the factory adding the lines of code shown in Listing 11.4
	6. Implement the specific interface methods.

	11.3 The ToolSvc
	Figure 11.1 ToolSvc design diagram
	11.3.1 Retrieval of tools via the IToolSvc interface
	Listing 11.5 The IToolSvc interface methods
	1: virtual StatusCode retrieve(const std::string& type, const IID&, IAlgTool*& tool, const IInterface* parent=0, bool createIf=true) = 0;
	2: virtual StatusCode retrieve(const std::string& type, const IID&, const std::string& name, IAlgTool*& tool, const IInterface* parent=0, bool createIf=true) = 0;

	Listing 11.6 The IToolSvc template methods
	1: template <class T>
	2: StatusCode retrieveTool(const std::string& type, T*& tool, const IInterface* parent=0, bool createIf=true) {...}
	3: template <class T>
	4: StatusCode retrieveTool(const std::string& type, const std::string& name, T*& tool, const IInterface* parent=0, bool createIf=true) {...}

	Listing 11.7 Example of retrieval by an algortihm of a shared tool in line 4: and of a private tool in line 10:
	1: // Example of tool belonging to the ToolSvc and shared between
	2: // algorithms
	3: StatusCode sc;
	4: sc = toolsvc()->retrieveTool("AddFourMom", m_sum4p);
	5: if(sc.isFailure()) {
	6: log << MSG::FATAL << " Unable to create AddFourMom tool" << endreq;
	7: return sc;
	8: }
	9: // Example of private tool
	10: sc = toolsvc()->retrieveTool("ImpactPar", m_ip, this);
	11: if(sc.isFailure()) {
	12: log << MSG::FATAL << " Unable to create ImpactPar tool" << endreq;
	13: return sc;
	14: }

	11.4 GaudiTools
	11.4.1 Associators
	11.4.1.1 The IAssociator Interface
	Listing 11.8 Methods of the IAssociator Interface that must be implemented by concrete associators
	1: virtual StatusCode i_retrieveDirect(ContaineData Objectect* objFrom, ContaineData Objectect*& objTo, const CLID idFrom, const CLID idTo) = 0;
	2: virtual StatusCode i_retrieveDirect(ContaineData Objectect* objFrom, std::vector<ContaineData Objectect*>& vObjTo, const CLID idFrom, const CLID idTo) = 0;
	3: virtual StatusCode i_retrieveInverse(ContaineData Objectect* objFrom, ContaineData Objectect*& objTo, const CLID idFrom, const CLID idTo) = 0;
	4: virtual StatusCode i_retrieveInverse(ContaineData Objectect* objFrom, std::vector<ContaineData Objectect*>& vObjTo, const CLID idFrom, const CLID idTo) = 0;

	Listing 11.9 Template methods of the IAssociator interface
	1: template <class T1, class T2> StatusCode retrieveDirect(T1* from, T2*& to) {...}
	2: template <class T1> StatusCode retrieveDirect(T1* from, std::vector<ContaineData Objectect*>& objVTo, const CLID idTo) {...}
	3: template <class T1, class T2> StatusCode retrieveInverse(T1* from, T2*& to) {...}
	4: template <class T1> StatusCode retrieveInverse(T1* from, std::vector<ContaineData Objectect*>& objVTo, const CLID idTo) {...}

	11.4.1.2 The Associator base class
	Access to Event Data Service -
	Associator Properties -
	Inverse Association -
	Locally kept information -

	11.4.1.3 A concrete example
	Listing 11.10 Example of setting properties for an associator via jobOptions
	Listing 11.11 Checking if objects to be associated are of the correct type
	1: if (idFrom != AxPartCandidate::classID()){
	2: objTo = 0;
	3: return StatusCode::FAILURE;
	4: }
	5: if (idTo != MCParticle::classID()) {
	6: objTo = 0;
	7: return StatusCode::FAILURE;
	8: }

	Listing 11.12 Extracted code from the AsctExampleAlgorithm
	1: #include "GaudiTools/IAssociator.h"
	2: // Example of retrieving an associator
	3: IAssociator
	4: StatusCode sc = toolsvc()->retrieveTool("AxPart2MCParticleAsct", m_pAsct);
	5: if(sc.isFailure()) {
	6: log << MSG::FATAL << "Unable to create Associator tool" << endreq;
	7: return sc;
	8: }
	9: // Example of retrieving inverse one-to-one information from an
	10: // associator
	11: SmartDataPtr<MCParticleVector> vmcparts (evt,"/MC/MCParticles");
	12: for(MCParticleVector::iterator itm = vmcparts->begin(); vmcparts->end() != itm; itm++) {
	13: AxPartCandidate* mptry = 0;
	14: StatusCode sc = m_pAsct->retrieveInverse(*itm, mptry);
	15: if(sc.isSuccess()) {...}
	16: else {...}
	17: }
	18: // Example of retrieving direct one-to-many information from an
	19: // associator
	20: SmartDataPtr<AxPartCandidateVector> candidates(evt, "/Anal/AxPartCandidates");
	21: std::vector<ContaineData Objectect*> pptry;
	22: AxPartCandidate* itP = *(candidates->begin());
	23: StatusCode sa = m_pAsct->retrieveDirect(itP, pptry, MCParticle::classID());
	24: if(sa.isFailure()) {...}
	25: else {
	26: for (std::vector<ContaineData Objectect*>::iterator it = pptry.begin(); pptry.end() != it; it++) {
	27: MCParticle* imc = dynamic_cast<MCParticle*>(*it);
	28: }
	29: }

	Chapter 12 Converters
	12.1 Overview
	12.2 Persistency converters
	Figure 12.1 Persistency conversion services in Gaudi

	12.3 Collaborators in the conversion process
	Figure 12.1 The classes (and interfaces) collaborating in the conversion process.

	12.4 The conversion process
	Figure 12.1 A trace of the creation of a new transient object.
	i. “Macroscopic” references appear as separate “leaves” in the data store. They have to be registered with a separate opaque address structure in the data directory of the object being converted. This must be done after the object was registe...
	ii. Internal references must be handled differently. There are two possibilities for resolving internal references:
	1. Load on demand. If the object the reference points to should only be loaded when accessed, the pointer must no longer be a raw C++ pointer, but rather a smart pointer object containing itself the information for later resolution of the ref...
	2. Filling of raw C++ pointers. This is only necessary if the object points to an object in another store, e.g. the detector data store, and should be avoided in classes foreseen to be made persistent. To resolve the reference a converter has...

	12.5 Converter implementation - general considerations
	Listing 12.1 An example converter class

	12.6 Storing Data using the ROOT I/O Engine
	12.7 The Conversion from Transient Objects to ROOT Objects
	12.8 Storing Data using other I/O Engines

	Chapter 13 Visualization
	13.1 Overview

	Chapter 14 Framework packages, interfaces and libraries
	14.1 Overview
	14.2 Athena Package Structure
	14.2.1 Packaging Guidelines

	14.3 Interfaces in Gaudi
	Listing 14.1 Example of an abstract interface (IService)
	1: // $Header: $
	2: #ifndef GAUDIKERNEL_ISERVICE_H
	3: #define GAUDIKERNEL_ISERVICE_H
	4:
	5: // Include files
	6: #include "GaudiKernel/IInterface.h"
	7: #include <string>
	8:
	9: // Declaration of the interface ID. (id, major, minor)
	10: static const InterfaceID IID_IService(2, 1, 0);
	11:
	12: /** @class IService IService.h GaudiKernel/IService.h
	13:
	14: General service interface definition
	15:
	16: @author Pere Mato
	17: */
	18: class IService : virtual public IInterface {
	19: public:
	20: /// Retrieve name of the service
	21: virtual const std::string& name() const = 0;
	22: /// Retrieve ID of the Service. Not really used.
	23: virtual const IID& type() const = 0;
	24: /// Initilize Service
	25: virtual StatusCode initialize() = 0;
	26: /// Finalize Service
	27: virtual StatusCode finalize() = 0;
	28: /// Retrieve interface ID
	29: static const InterfaceID& interfaceID() { return IID_IService; }
	30: };
	31:
	32: #endif // GAUDIKERNEL_ISERVICE_H

	14.3.1 Interface ID
	14.3.2 Query Interface
	Listing 14.2 Example usage of queryInterface to navigate between interfaces
	1: IMessageSvc* msgSvc();
	2: ...
	3: IProperty* msgProp;
	4: msgSvc()->queryInterface(IID_IProperty, (void**)&msgProp);
	5: std::string dfltLevel;
	6: StatusCode scl = msgProp->getProperty("OutputLevel", dfltLevel);

	Listing 14.3 Example implementation of queryInterface()
	1: StatusCode DataSvc::queryInterface(const InterfaceID& riid,
	2: void** ppvInterface) {
	3: if (IID_IDataProviderSvc.versionMatch(riid)) {
	4: *ppvInterface = (IDataProviderSvc*)this;
	5: }
	6: else if (IID_IDataManagerSvc.versionMatch(riid)) {
	7: *ppvInterface = (IDataManagerSvc*)this;
	8: }
	9: else {
	10: return Service::queryInterface(riid, ppvInterface);
	11: }
	12: addRef();
	13: return SUCCESS;
	14: }

	14.4 Libraries in Athena
	14.4.1 Component libraries
	14.4.1.1 Declaring Components
	Listing 14.4 The MyComponents_entries.cpp file
	1. The argument to the DECLARE_FACTORY_ENTRIES statement is the name of the component library.
	2. Each component within the library should be declared using one of the DECLARE_XXX statements discussed in detail in the next Section.

	14.4.1.2 Component declaration statements
	Listing 14.5 The available component declaration statements
	1. Declarations of the form DECLARE_GENERIC_CONVERTER(X) are used to declare the generic converters for DataObject and ContaineData Objectect classes. For DataObject classes, the argument should be the class name itself (e.g. EventHeader), wh...
	2. Declarations of this form are used to declare components from explicit C++ namespaces. The first argument is the namespace (e.g. Atlfast), the second is the class name (e.g. CellMaker).

	14.4.1.3 Loading Components
	Listing 14.6 The MyComponents_load.cpp file
	1. The argument of LOAD_FACTORY_ENTRIES is the name of the component library.

	14.4.1.4 CMT requirements file fragment to create a component library
	Listing 14.7 Creating a component library
	1. The normal convention is for the library name to be the same as the package name.
	2. The <list of files> can either be an explicit list of files as shown, or wildcards may be used:
	3. Source files not located in the package src/ directory can be specified using the -s=<directory> option, which specifies a directory path relative to the src/ directory:
	4. The component_library pattern operates on the library specified in the previous library statement.

	14.4.1.5 Specifying component libraries at run-time
	Listing 14.8 Specifying a component library at run-time
	1. This is a list property, allowing multiple such libraries to be specified in a single line.
	2. It is important to use the “+=” syntax to append the new component library or libraries to any that might already have been configured.

	14.4.2 Linker (or installed) libraries
	14.4.2.1 CMT requirements file fragment to create a linker or installed library
	Listing 14.9 Creating a linker/installled library
	1. The normal convention is for the library name to be the same as the package name.
	2. The <list of files> can either be an explicit list of files as shown, or wildcards may be used:
	3. Source files not located in the package src/ directory can be specified using the -s=<directory> option, which specifies a directory path relative to the src/ directory:
	4. The installed_library pattern operates on the library specified in the previous library statement.

	14.4.3 Dual use libraries
	14.4.3.1 CMT requirements file fragment to create a dual use library
	Listing 14.10 Creating a dual use library
	1. The normal convention is for the library name to be the same as the package name.
	2. The list of files can either be an explicit list of files as shown, or wildcards may be used:
	3. Two component declaration files must exist in the src/components directory. They are:
	4. Factory code as described in Section 3.3.1 should be removed from the Algorithm, Service, Tool or Converter header file.

	14.4.4 Linking FORTRAN code

	Chapter 15 Analysis utilities
	15.1 Overview
	15.2 CLHEP
	15.3 ROOT

	Appendix A Options for standard components
	A.1 Obsolete options
	Appendix B Design considerations
	B.1 Generalities
	B.2 Designing within the Framework
	B.3 Analysis Phase
	B.4 Design Phase
	Appendix C Job Options Grammar
	C.1 The EBNF grammar of the Job Options files
	C.2 Job Options Error Codes and Error Messages
	Table 15.1 Possible Error-Codes

	Appendix D The ATLAS Development Model
	D.1 Overview
	D.2 Packages
	D.3 Releases
	D.4 CMT - the Configuration Management Tool
	D.5 Establishing a login environment
	D.6 Setting up a test release
	Appendix E Package and Directory Structure
	E.1 Subsystem Package Organization
	Figure 15.1 Package Organization
	Figure 15.2 Alternative Package Organization

	E.2 Utilities Package Directory Structure
	Figure 15.3 Utilities Package Directory Structure
	1. These packages create a shared library that is designed to be linked against.
	2. The installed_library pattern for shared libraries should be used as described in Appendix 14.4.2.

	E.3 Algorithm and Service Package Directory Structure
	Figure 15.4 Algorithm and Service Package Directory Structure
	1. These packages should use one of two patterns:
	1. component_library - for simple component libraries
	2. dual_use_library - for Algorithms or Services that are capable of being inherited from.

	E.4 Data Package Directory Structure
	Figure 15.5 Data PackagePackage Directory Structure

	Appendix F Standard ATLAS Patterns and Variables
	F.1 Overview
	F.2 Platform Environment Variables
	F.3 Patterns controlling include paths
	F.4 Patterns controlling library creation
	F.5 Patterns controlling linker options
	F.6 Patterns for establishing a run-time environment
	Appendix G References
	[1] GAUDI User Guide http://lhcb-comp.web.cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf
	[2] GAUDI - Architecture Design Report [LHCb 98-064 COMP]
	[3] HepMC Reference
	[4] Python Reference
	[5] StoreGate Design Document

